HDL Coder™
User's Guide

[
i R
V/
N
y.

MATLAB&SIMULINK?

R2018b -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ User's Guide
© COPYRIGHT 2012-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only
Online only
Online only

New for Version 3.0 (R2012a)

Revised for Version 3.1 (R2012b)
Revised for Version 3.2 (R2013a)
Revised for Version 3.3 (R2013b)
Revised for Version 3.4 (R2014a)
Revised for Version 3.5 (R2014b)
Revised for Version 3.6 (R2015a)
Revised for Version 3.7 (R2015b)
Rereleased for Version 3.6.1 (Release
2015aSP1)

Revised for Version 3.8 (R2016a)
Revised for Version 3.9 (R2016b)
Revised for Version 3.10 (Release 2017a)
Revised for Version 3.11 (R2017Db)
Revised for Version 3.12 (Release 2018a)
Revised for Version 3.13 (Release 2018b)

Contents

HDL Code Generation from MATLAB

Functions Supported for HDL Code Generation

1]

Functions Supported for HDL Code Generation —

Alphabetical List 1-2
Functions Supported for HDL Code Generation —

Categorical List 1-10
Arithmetic Operations in MATLAB 1-11
Bitwise Operations in MATLAB 1-11
Complex Numbers in MATLAB 1-11
Control Flow in MATLAB 1-12
Logical Operators in MATLAB 1-12
Arraysin MATIAB 1-13
Relational Operators in MATLAB 1-13
Fixed-Point Designer 1-13

MATLAB Algorithm Design

2|

Supported MATLAB Data Types, Operators, and Control

Flow Statements 2-2
Supported Data Types 2-2
Supported Operators, 2-4
Control Flow Statements 2-6

vi

Contents

Persistent Variables and Persistent Array Variables
Persistent Variables
Persistent Array Variables

Complex Data Type Support

Declaring Complex Signalscccvvuunnn.

Conversion Between Complex and Real Signals . . .
Support for Vectors of Complex Numbers

HDL Code Generation for System Objects
Why Use System Objects?

Predefined System Objects

User-Defined System Objects
Limitations of HDL Code Generation for System
Objects

System object Examples for HDL Code Generation

Predefined System Objects Supported for HDL Code
Generation
Predefined System Objects in MATLAB Code
Predefined System Objects in the MATLAB
System Block

Load constants from a MAT-File

Generate Code for User-Defined System Objects . . .

How To Create A User-Defined System object

User-Defined System object Example

Map MatricestoROM

Fixed-Point Bitwise Functions

Fixed-Point Run-Time Library Functions

Fixed-Point Function Limitations

Model State with Persistent Variables and System
Objects

Bit Shifting and Bit Rotation

Bit Slicing and Bit Concatenation

2-21
2-22
2-22
2-22
2-25
2-26
2-32
2-36
2-38
2-42

2-45

Guidelines for Efficient HDLCode 2-47

MATLAB Design Requirements for HDL Code
Generation 2-48

What Is a MATLAB Test Bench? 2-49

MATLAB Test Bench Requirements and Best

Practices 2-50
MATLAB Test Bench Requirements 2-50
MATLAB Test Bench Best Practices 2-50

MATLAB Best Practices and Design Patterns for
HDL Code Generation

3|

Model a Counter for HDL Code Generation
MATLAB Counterc. .
MATLAB Code forthe Counter
Best Practices in this Example

© WY

W NN

Model a State Machine for HDL Code Generation 3-5
MATLAB State Machines 3-5
MATLAB Code for the Mealy State Machine 3-5
MATLAB Code for the Moore State Machine 3-7
Best Practices 3-9

Generate Hardware Instances For Local Functions 3-10
MATLAB Local Functions 3-10
MATLAB Code for mlhdlc two counters.m 3-10

Implement RAM Using MATLAB Code 3-13
Implementation of RAM 3-13
Implement RAM Using a Persistent Array or System object

Properties 3-13
Implement RAM Using hdLRAM 3-14

For-Loop Best Practices for HDL Code Generation 3-16
MATLAB LOODS .« oot e it e e e e 3-16
Monotonically Increasing Loop Counters 3-16

viii

Contents

Persistent Variablesin Loops 3-17
Persistent Arraysin Loops 3-18

Fixed-Point Conversion

4

Floating-Point to Fixed-Point Conversion 4-2
Fixed-Point Type Conversion and Refinement 4-15
Working with Generated Fixed-Point Files 4-25
Specify Type Proposal Options 4-32
Log Data for Histogram 4-36
View and Modify Variable Information 4-38
View Variable Information 4-38
Modify Variable Information 4-38
Revert Changes 4-39
Promote Sim Min and Sim Max Values 4-40
Automated Fixed-Point Conversion 4-41
License Requirements 4-41
Automated Fixed-Point Conversion Capabilities 4-41
Code COVerage . .. ovv v iiie e it e 4-42
Proposing Data Types, 4-45
Locking Proposed Data Types 4-47
Viewing Functions 4-47
Viewing Variables 4-47
Histogram 4-53
Function Replacements 4-55
Validating Types 4-55
Testing Numerics 4-56
Detecting Overflows 4-56
Custom Plot Functions 4-58

Visualize Differences Between Floating-Point and Fixed-
PointResults 4-60

Inspecting Data Using the Simulation Data Inspector .. 4-66

What Is the Simulation Data Inspector? 4-66
Import Logged Data 4-66
Export LoggedData 4-66
Group Signals 4-67
RunOptions i 4-67
CreateReport 4-67
Comparison Options, 4-67
Enabling Plotting Using the Simulation Data
Inspector 4-67
Save and Load Simulation Data Inspector Sessions 4-68
Enable Plotting Using the Simulation Data Inspector .. 4-69
Fromthe Ul 4-69
From the Command Line 4-69

Replacing Functions Using Lookup Table

Approximations 4-71
Replace a Custom Function with a Lookup Table 4-72
Using the HDL Coder App 4-72
From the Command Line 4-77
Replace the exp Function with a Lookup Table 4-80
Fromthe Ul 4-80
From the Command Line 4-85
Data Type Issues in Generated Code 4-88
Enable the Highlight Option in a Project 4-88
Enable the Highlight Option at the Command Line 4-88
Stowaway Doubles 4-88
Stowaway Singles 4-88
Expensive Fixed-Point Operations 4-88

S|

Create and Set Up Your Project 5-2
Createa New Project 5-2
Open an Existing Project 5-4

ix

X

Contents

Add Filestothe Project

Specify Properties of Entry-Point Function Inputs
When to Specify Input Properties
Why You Must Specify Input Properties
Propertiesto Specify
Rules for Specifying Properties of Primary Inputs
Methods for Defining Properties of Primary Inputs

Basic HDL Code Generation with the Workflow
Advisor

HDL Code Generation from System Objects

Code Generation Reports
Report Generation
ReportLocation
Errors and Warningscun....
Filesand Functions
MATLAB SOUICEottt e
MATLAB Variables
Additional Reports
Report Limitations

Generate Instantiable Code for Functions
How to Generate Instantiable Code for Functions
Generate Code Inline for Specific Functions
Limitations for Instantiable Code Generation for

Functions

Integrate Custom HDL Code Into MATLAB Design
Define the hdl.BlackBox System object
Use System object In MATLAB Design Function
Generate HDLCode,
Limitations for hdl.BlackBox

Enable MATLAB Function Block Generation
Requirements for MATLAB Function Block
Generation0
Enable MATLAB Function Block Generation
Restrictions for MATLAB Function Block Generation . .
Results of MATLAB Function Block Generation

System Design with HDL Code Generation from MATLAB

6/

and Simulink 5-36
Generate HDL Code from MATLAB Code Using the
Command Line Interface 5-40
Specify the Clock Enable Rate 5-45
Why Specify the Clock Enable Rate? 5-45
How to Specify the Clock Enable Rate 5-45
Specify Test Bench Clock Enable Toggle Rate 5-47
When to Specify Test Bench Clock Enable Toggle
Rate 5-47
How to Specify Test Bench Clock Enable Toggle Rate .. 5-47
Generate an HDL Coding Standard Report from
MATLAB 5-49
Using the HDL Workflow Advisor 5-49
Using the Command Line 5-51
Generate an HDL Lint Tool Script 5-53
How To Generate an HDL Lint Tool Script 5-53
Generate a Board-Independent IP Core from MATLAB . 5-56
Generate a Board-Independent IP Core 5-56
Requirements and Limitations for IP Core Generation .. 5-58
Minimize Clock Enables 5-59
Usingthe GUL 5-60
Using the Command Line 5-60
Limitations i, 5-60
Verification
Verify Code with HDL TestBench 6-2
Test Bench Generation 6-6
How Test Bench Generation Works 6-6
Test BenchDataFiles 6-6

xi

xii

7

8|

Contents

Test Bench Data Type Limitations 6-6
Use Constants Instead of File I/O 6-7
Deployment
Generate Synthesis Scripts 7-2
Optimization
RAMMappingiiiiinnn.. 8-2
Map Persistent Arrays and dsp.Delayto RAM 8-3
How To Enable RAM Mapping 8-3

RAM Mapping Requirements for Persistent Arrays and
System object Properties 8-4

RAM Mapping Requirements for dsp.Delay System

Objects e 8-6
RAM Mapping Comparison for MATLAB Code 8-8
Pipelining MATLAB Code 8-9
Port Registers 8-9
Input and Output Pipeline Registers 8-9
Operation Pipelining 8-9
Pipeline MATLAB Expressions 8-11
How To Pipeline a MATLAB Expression 8-11
Limitations of Pipelining for MATLAB Expressions 8-12
Distributed Pipelining 8-13
What is Distributed Pipelining? 8-13
Benefits and Costs of Distributed Pipelining 8-13
Selected Bibliography 8-13

Optimize MATLABLoops 8-14

Loop Streaming, 8-14
LoopUnrolling iiiiinnn... 8-14
How to Optimize MATLAB Loops 8-15
Limitations for MATLAB Loop Optimization 8-15
Constant Multiplier Optimization 8-17
What is Constant Multiplier Optimization? 8-17
Specify Constant Multiplier Optimization 8-18
Distributed Pipelining for Clock Speed Optimization . . 8-19
Map Matrices to Block RAMs to Reduce Area 8-24
Resource Sharing of Multipliers to Reduce Area 8-29
Loop Streaming to Reduce Area 8-38
Constant Multiplier Optimization to Reduce Area 8-44

HDL Workflow Advisor Reference

9

HDL Workflow Advisor 9-2
OVETVIEBW . . ottt it et e et e 9-2
MATILAB to HDL Code and Synthesis 9-7
MATLAB to HDL Code Conversion 9-7
Code Generation: TargetTab 9-7
Code Generation: Coding StyleTab 9-8
Code Generation: Clocks and Ports Tab 9-10
Code Generation: Test BenchTab 9-12
Code Generation: OptimizationsTab 9-14
Simulation and Verification 9-16
Synthesis and Analysis 9-16

xiii

xiv

HDL Code Generation from Simulink

Contents

Model Design for HDL Code Generation

10

Signal and Data Type Support 10-2
Buses 10-2
Enumerations 10-2
Matrices 10-3
Unsupported Signal and Data Types 10-6

Use Simulink Templates for HDL Code Generation 10-8
Create Model Using HDL Coder Model Template 10-8
HDL Coder Model Templates 10-9

Generate DUT Ports for Tunable Parameters 10-22
Prerequisites 10-23
Create and Add Tunable Parameter That Maps to DUT

Ports 10-23
GeneratedCode i, 10-23
Limitations 10-24
Use Tunable Parameter in Other Blocks 10-24

Generate Parameterized Code for Referenced

Models i 10-26
Parameterize Referenced Model for HDL Code

Generation 10-26

Restrictions 10-26

Using Matrix Multiply Block for HDL Code
Generation 10-28

Generating HDL Code for Subsystems with Array of

Buses 10-30
How HDL Coder Generates Code for Array of Buses .. 10-30
Array of Buses Limitations 10-33

Generate HDL Code for Blocks Inside For Each
Subsystem 10-34

Model and Debug Test Point Signals with HDL

Coder™ 10-40
Allocate Sufficient Delays for Floating-Point
Operations 10-50
Problem 10-50
CaUSE . vt 10-50
Solution 10-51
Optimize Generated HDL Code for Multirate Designs with
Large Rate Differentials 10-57
IsSSUe ..o 10-57
Description i 10-57
Recommendations 10-60

Getting Started with HDL Coder Native Floating-Point

Support e 10-67
Numeric Considerations and IEEE-754 Standard
Compliance, 10-67
Data Type Considerations 10-68
Numeric Considerations with Native Floating-Point . . 10-71
Round to Nearest Rounding Mode 10-71
Denormal Numbers 10-72
Exception Handling 10-72
Relative Accuracy and ULP Considerations 10-73
ULP of Native Floating-Point Operators 10-75
Considerationsoiiiiiiii... 10-76
Latency of Floating Point Operators 10-79
Math Operations 10-79
Trigonometric and Exponential Operations 10-81
Comparisons and Conversions 10-83
Latency Considerations with Native Floating Point ... 10-85

Generate Target-Independent HDL Code with Native

Floating-Point 10-94
How HDL Coder Generates Target-Independent HDL
Code .. 10-94
Generate Code 10-95
View Code Generation Report 10-97
Analyze Results 10-98

xvi

Contents

Verify the Generated Code from Native Floating-

Point
Specify the Tolerance Strategy .

Verify the Generated Code with HDL Test Bench . . .
Verify the Generated Code with Cosimulation

Limitation

Simulink Blocks Supported with Native Floating-

Point

Supported Simulink Blocks with Double Data Types

Supported Simulink Blocks with Single Data Types . .
Simulink Block Restrictions

Supported Data Types and Scope .

Supported Data Types
Unsupported Data Types
Scope for Variables

Verilog HDL Import: Import Verilog Code and Generate

Simulink Model

Why Use HDL Import?
HDL Import Requirements

How to Import HDL Code

Model Location
Errors and Warnings

Supported Verilog Constructs for HDL Import
Module Definition and Instantiations

Data Types and Vectors
Identifiers and Comments
Assignments e
Operatorst e

Conditional and Looping Statements

Procedural Blocksand Events
Other Constructs

Limitations of Verilog HDL Import

10-101
10-101
10-102
10-103
10-105

10-106
10-106
10-107
10-109

10-111
10-111
10-113
10-114

10-115
10-115
10-115
10-116
10-116
10-116

10-118
10-118
10-119
10-119
10-120
10-120
10-121
10-121
10-122

10-124

Code Generation Options in the HDL Coder Dialog

Boxes
11|

Set HDL Code Generation Options 11-2

HDL Code Generation Options in the Configuration
Parameters DialogBox 11-2

HDL Code Generation Options in the Model

Explorer 11-3
CodeMenuccviiiiiin i, 11-4
HDL Code Options in the Block Context Menu 11-5
The HDL Block Properties Dialog Box 11-6

HDL Code Generation Pane: General

12

HDL Code Generation Top-Level Pane Overview 12-2
Buttons in the HDL Code Generation Top-Level Pane . . 12-2
Target 12-3
Generate HDLfor 12-3
Languaget 12-4
Folder i 12-5
Code Generation OQutput 12-6
Generate HDLcode 12-6
Generate validationmodel 12-8

13|

Target Overviewcivuuuin. 13-2
Tooland Device 13-3
SynthesisTool 13-3
Family 13-4

xvii

xviii

Device . ..o 13-5

Package 13-6
Speed e 13-7
Target Frequency 13-9
Settings 13-9
Command-Line Information 13-10
SEe AlSO 13-10

HDL Code Generation Pane: Optimization

14

Contents

Optimization Overview 14-2
Balancedelays 14-3
Settings 14-3
Command-Line Information 14-3
See AlSO 14-4
RAMMapping 14-5
Map pipeline delaystoRAM 14-5
RAM mapping threshold (bits) 14-6
Transform non zero initial value delay 14-8
Settings i 14-8
Command-Line Information 14-8
SEe AlSO 14-9
Multiplier partitioning threshold 14-10
Settings 14-10
Command-Line Information 14-10
See Also 14-11
Distributed Pipelining 14-12
Hierarchical distributed pipelining 14-12
Distributed pipelining priority 14-13
Clock Rate Pipelining 14-15
Clock-rate pipelining 14-15
Allow clock-rate pipelining of DUT output ports 14-16

Adaptive pipelining 14-18

Settings i 14-18
Dependencyooiii i 14-18
Command-Line Information 14-18
See AlsO 14-19
Preserve designdelays 14-20
Settings 14-20
Command-Line Information 14-20
See AlsO 14-21
Resource Sharing of Adders and Multipliers 14-22
Share Adders i, 14-22
Adder sharing minimum bitwidth 14-23
Share Multipliers 14-24
Multiplier sharing minimum bitwidth 14-26
Multiplier promotion threshold 14-27
Resource Sharing of Multiply-Add and Other Blocks .. 14-29
Share Multiply-Add blocks 14-29
Multiply-Add block sharing minimum bitwidth 14-30
Share Atomic subsystems 14-31
Share MATLAB Function blocks 14-32
Share Floating-Point IPs 14-35
Settings 14-35
Dependencyc.ouiiiiiii 14-35
Command-Line Information 14-35
See AlSO 14-36
Multicycle Path Constraints 14-37
Enable based constraints 14-37
Register-to-register pathinfo 14-38

HDL Code Generation Pane: Floating Point

15

Floating Point Overview 15-2

xix

Floating Point IP Library 15-3

Settings 15-3
Command-Line Information 15-3
See AlsO 15-4
Native Floating Point 15-5
Latency Strategy 15-5
Handle Denormals 15-6
Mantissa Multiplier Strategy 15-7
FPGA Floating-Point Libraries 15-10
Initialize IP Pipelines ToZero 15-10
Latency Strategy 15-11
Objective 15-12
IPSettingsco i 15-13

HDL Code Generation Pane: Global Settings

16|

Global Settings Overview 16-3
Clock Settings and Timing Controller Postfix 16-4
Clockinputport 16-4
Clockinputs 16-5
Clockedge 16-6
Clocked processpostfix 16-7
Timing controller postfix 16-8
Reset Settings 16-10
Resettype i 16-10
Reset assertedlevel 16-11
Resetinputport 16-13
Clock Enable Settings 16-15
Clock enable inputport 16-15
Enableprefix 16-16
Oversampling factor 16-18
Settings 16-18
Dependencycoiiii i 16-18

Contents

Command-Line Information

SeeAlso

Comment in header
Settings

Command-Line Information

SeeAlso

Language-Specific Identifiers and File Extensions

Verilog file extension . .
VHDL file extension . . .
Entity conflict postfix . .

Packagepostfix

Reserved word postfix .
Module name prefix . ..

Split VHDL entity and architecture

Split entity file postfix

Splitarch filepostfix
Split entity and architecture

Complex Signals Postfix . .

Complex real part postfix

Complex imaginary part

VHDL Architecture and Lib

postfix

rary Name

VHDL architecturename

VHDL librarynamec.couuiiinnnn...

Pipeline postfix
Settings

Command-Line Information

Generate VHDL code for model references into a single

library
Settings
Dependency

Command-Line Information

Generate Statement Labels
Block generate label . ..

Output generatelabel

Instance generate label

16-18
16-19

16-20
16-20
16-20
16-21

16-22
16-22
16-23
16-24
16-25
16-26
16-26

16-28
16-28
16-28
16-29

16-31
16-31
16-31

16-32
16-32
16-32

16-33
16-33
16-33

16-35
16-35
16-35
16-35

16-36
16-36
16-36
16-37

xxi

xxii

Contents

Vector and Component Instances Labels
Vectorprefix i
Instance postfix
Instanceprefix

Mapfilepostfix
Settings
Command-Line Information

Prefix for the generated model name
Settings
Command-Line Information

Input and Output Port Data Types
Inputdatatype
Outputdatatype

Clock Enable outputport
Settings
Command-Line Information
See AlSO

Minimize Clock Enables and Reset Signals
Minimize clock enables
Minimize globalresets

Use trigger signalasclock
Settings
Command-Line Information

Enable HDL DUT port generation for test points
Settings
Command-Line Information
See Also

RTL Annotations
Use Verilog "timescale directives
Inline VHDL configuration
Concatenate type safe zeros
Emit time/date stampinheader
Include requirements in block comments

RTL Customizations for Constants and MATLAB Function

Blocks 16-58
Inline MATLAB Function blockcode 16-58
Represent constant values by aggregates 16-59

RTL Customizations for RAMs 16-60
Initialize all RAM blocks 16-60
RAM Architecture 16-61

No-reset registers initialization 16-62
Settings 16-62
Usage Notes, 16-62
Command-Line Information 16-63
See AlsO 16-64

RTLStyle s 16-65
Use “rising edge/falling edge” style for registers 16-65
Minimize intermediate signals 16-66
Scalarize vectorports 16-67
Loopunrolling, 16-69
Generate parameterized HDL code from masked

subsystem 16-70
Enumerated Type Encoding Scheme 16-71

Timing Controller Settings 16-73
Optimize timing controller 16-73
Timing controller architecture 16-74

File Comment Customization 16-75
Custom File Header Comment 16-75
Custom File Footer Comment 16-75

Choose Coding Standard and Report Options 16-77
HDL coding standard 16-77
Reportoptions 16-78

Basic Coding Practices 16-80
Check for duplicate names 16-80
Check for HDL keywords in design names 16-81
Check module, instance, entity name length 16-82
Check signal, port, and parameter name length 16-83

xxiii

xxiv

RTL Description Rules for clock enables and resets . .
Check for clock enable signals
Detect usage of reset signals
Detect usage of asynchronous reset signals

RTL Description Rules for Conditionals
Check for conditional statements in processes
Check if-else statement chainlength
Check if-else statement nestingdepth

Other RTL DescriptionRules
Minimize use of variables
Check for initial statements that set RAM initial

values e
Check multiplierwidth

RTLDesignRules
Check for non-integer constants
Checklinelength

Diagnostics for Optimizations
Highlight feedback loops inhibiting delay balancing and
optimizations
Highlight blocks inhibiting clock-rate pipelining
Highlight blocks inhibiting distributed pipelining . . .

Diagnostics for Reals and Black Box Interfaces
Check for name conflicts in black box interfaces
Check for presence of reals in generated HDL code .

16-86
16-86
16-87
16-88

16-90
16-90
16-91
16-92

16-94
16-94

16-95
16-96

16-98
16-98
16-99

16-101

16-101
16-102
16-103

16-106
16-106
16-107

HDL Code Generation Pane: Report

17|

Report Overview
SEEAISO ...

Generate traceabilityreport
Settings
Dependencyttt
Command-Line Information

Contents

See AlSO 17-4

Traceabilitystyle 17-5
Settings 17-5
Dependencyt 17-5
Command-Line Information 17-6
See AlSO 17-6

Generate model Webview 17-7
Settings 17-7
Dependencies i 17-7
Command-Line Information 17-7
See AlSO e 17-8

Generate resource utilization report 17-9
Settings 17-9
Command-Line Information 17-9
SEee AlSO 17-10

Generate high-level timing critical path report 17-11
Settings 17-11
Command-Line Information 17-11
See AlSO 17-12

Generate optimizationreport 17-13
Settings 17-13
Command-Line Information 17-13
See AlSO 17-14

HDL Code Generation Pane: Test Bench

18|

Test Bench Overview 18-2
Generate Test Bench Button 18-2
Test Bench Generation Qutput 18-3
HDLtestbench 18-3
Cosimulationmodel 18-4
SystemVerilog DPI testbench 18-4
Simulationtool 18-5

Contents

HDL code coverageuvueeuuunnn...

Test Bench name, data file, and reference Postfix
Test benchname postfix
Test bench reference postfix
Test bench data file name postfix

ClockInputSignals
Forceclock i,
Clock hightime (ns)
Clocklow time (nS)c v

Setupand Hold Time
Holdtime (nS) v
Setuptime(ns)

Clock Enable and Reset Input Signals
Forceclockenable
Clock enable delay (in clock cycles)
Forcereset
Reset length (in clock cycles)

Test Bench Stimulus and Qutput
Hold input data between samples
Initialize test benchinputs
Ignore output data checking (number of samples)
Use file 1/O to read/write test bench data

Multi-filetestbench
Settings
Dependencyovviit i
Command-Line Information
SEEAISO ...

Floating Point Tolerance
Floating point tolerance check basedon
Tolerance Value

Simulation librarypath
Settings
Command-Line Information
See AlSO

HDL Code Generation Pane: EDA Tool Scripts

19]

EDA Tool Scripts Overview

Generate EDAscripts

Settings

Command-Line Information

SeeAlso

Compilation Script .

Compile filepostfix
Compile initialization
Compile command for VHDL
Compile command for Verilog
Compile termination

Simulation Script . .

Simulation file postfix
Simulation initialization
Simulation command
Simulation waveform viewing command
Simulation termination

Simulator flags .

Synthesis Script . . .

Choose synthesistool
Synthesis filepostfix
Synthesis initialization
Synthesiscommand
Synthesis termination
Additional files to add to synthesis project

Lint Script

Choose HDL linttool

Lint initialization

Lint command . .

Lint termination

xxvii

Modeling Guidelines

20

Basic Guidelines for Modeling HDL Algorithm in

Simulink e 20-2
Use HDL-Supported Blocks 20-2
Partition Model into DUT and Test Bench 20-4

Guidelines for Model Setup and Checking Model

Compatibility 20-6
Use hdlsetup Function 20-6
Check Subsystem for HDL Compatibility 20-6
Run Model Checks for HDL Coder 20-8

Basic Guidelines for Blocks Usage 20-10
Simulink Blocks 20-10
MATLAB Function Blocks 20-10
Stateflow Blocks 20-11
Model References 20-11
BlackBox Subsystems 20-11

Guidelines for Modeling with Native Floating Point . . 20-13
Use Blocks from HDL Floating Point Operations

Library 20-13
Use Floating-Point Types Based on Accuracy and

Performance 20-13
Enable Optimizations such as Resource Sharing on

Modelo 20-13
Customize Latency of Model or Blocks 20-14
Apply Peephole Optimization Techniques 20-14
Use Tree as HDL Architecture 20-14

Supported Blocks Library and Block Properties

21

Generate a Supported Blocks Report 21-2

View HDL-Specific Block Documentation 21-3

xxviii Contents

HDL Block Properties: General 21-4

OVEIVIEW . . ot e e 21-5
AdaptivePipelining 21-5
BalanceDelays 21-6
ClockRatePipelining 21-7
ConstMultiplierOptimization 21-8
ConstrainedOutputPipeline 21-9
DistributedPipelining 21-10
DotProductStrategy 21-11
DSPStyle ... 21-11
FlattenHierarchy 21-14
InputPipeline 21-16
InstantiateFunctions 21-16
InstantiateStages L. 21-18
LoopOptimization 21-18
LUTRegisterResetType 21-19
MapPersistentVarsToRAM 21-19
OutputPipeline 21-22
ResetType 21-22
SerialPartition 21-24
SharingFactor 21-25
SoftReset 21-25
StreamingFactor 21-27
UseMatrixTypesInHDL 21-27
UseRAM ... 21-29
VariablesToPipeline 21-33
HDL Block Properties: Native Floating Point 21-34
OVEIVIEW . ottt e e 21-34
CheckResetToZero 21-34
DivisionAlgorithm 21-35
HandleDenormals 21-37
InputRangeReduction 21-38
LatencyStrategy 21-39
NFPCustomlatency 21-41
MantissaMultiplyStrategy 21-42
Maxlterationscini . 21-44
HDL Filter Block Properties 21-46
AdderTreePipeline 21-46
AddPipelineRegisters 21-46
ChannelSharing 21-47
CoeffMultipliers 21-47
DALUTPartitionciiiii ... 21-48

xxix

XXX

Contents

DARAIX © .o vvv oo et
FoldingFactor
MultiplierInputPipeline
MultiplierOutputPipeline
NumMultipliers
ReuseAccum i
SerialPartition

HDL Filter Architectures

Fully Parallel Architecture
Serial Architectures
Frame-Based Architecture

Distributed Arithmetic for HDL Filters

Requirements and Considerations for Generating
Distributed ArithmeticCode
Further References

Set and View HDL Block Parameters

Set HDL Block Parameters from the GUI
Set HDL Block Parameters from the Command Line . .
View All HDL Block Parameters
View Non-Default HDL Block Parameters

Set HDL Block Parameters for Multiple Blocks
View HDL Model Parameters

Pass through, No HDL, and Cascade
Implementations

Pass-through and No HDL Implementations
Cascade Architecture Best Practices

Build a ROM Block with Simulink Blocks

22

Timing Controller for Multirate Models

Generate Reset for Timing Controller .

Requirements for Timing Controller Reset Port

Generation

How To Generate Reset for Timing Controller
Limitations for Timing Controller Reset Port

Generation

Multirate Model Requirements for HDL Code

Generation
Model Configuration Parameters . . .

SampleRate
Blocks To Use For Rate Transitions . .

Generate a Global Oversampling Clock

Why Use a Global Oversampling Clock?
Requirements for the Oversampling Factor
Specifying the Oversampling Factor From the GUI . ..

Specifying the Oversampling Factor From the Command

Line

Resolving Oversampling Rate Conflicts

Use Trigger As Clock in Triggered Subsystems

Requirements

Specify Trigger As Clock

Limitations

Generate Multicycle Path Information Files

overviewcvn..

Format and Content of a Multicycle Path Information

File

File Naming and Location Conventions
Generating Multicycle Path Information Files Using the

GUI ...

Generating Multicycle Path Information Files Using the

Command Line
Limitations

Using Multiple Clocks in HDL Coder™

22-9
22-9
22-9
22-10

22-11
22-11

22-15
22-15
22-15
22-16

22-17
22-17

22-18
22-23

22-23

22-23
22-24

22-26

xxxi

xxxii

Contents

Generating Bit-Itue Cycle-Accurate Models

23

24

Generated Model and Validation Model 23-2
Generated Model 23-2
Validation Model 23-3

Locate Numeric Differences After Speed

Optimization 23-5
Optimization

Automatic Iterative Optimization 24-2
How Automatic Iterative Optimization Works 24-2
Automatic Iterative Optimization Output 24-3
Automatic Iterative Optimization Report 24-3
Requirements for Automatic Iterative Optimization 24-4
Limitations of Automatic Iterative Optimization 24-4

Constant Folding and Peephole Optimizations in HDL

Coder 24-5
ConstantFolding 24-5
Strength Reduction 24-7
Combine Operations 24-9
Considerations 24-10

Optimization with Constrained Overclocking 24-11
Why Constrain Overclocking? 24-11
Optimizations that Overclock Resources 24-11
How to Use Constrained Overclocking 24-12
Constrained Overclocking Limitations 24-12

Resolve Numerical Mismatch with Delay Balancing . . 24-13

Streaming 24-19
What [s Streaming? 24-19
Specify Streaming 24-20

How to Determine Streaming Factor and Sample

Time
Determine Blocks That Support Streaming
Requirements for Streaming Subsystems
Streaming Report

Resource Sharing
How Resource Sharing Works
Benefits and Costs of Resource Sharing
Shareable Resources in Different Blocks
Specify Resource Sharing
Limitations for Resource Sharing
General Block Requirements for Resource Sharing . . .
Resource Sharing Requirements For Product and Gain

Blocks
Resource Sharing Requirements For MATLAB Function

Blocks
Resource Sharing Requirements For Atomic

Subsystems
Resource Sharing Report

DelayBalancing
Why Use Delay Balancing
Specify Delay Balancing
Delay Balancing Limitations
Delay Balancing Report

Find Feedbackloops
Specify Highlighting of Feedback Loops
Remove Highlighting
Limitations i

Hierarchy Flattening
What [s Hierarchy Flattening?
When to Flatten Hierarchy
Prerequisites for Hierarchy Flattening
Options for Hierarchy Flattening
How to Flatten Hierarchy
Limitations for Hierarchy Flattening

RAMMapping

RAM Mapping with the MATLAB Function Block

24-20
24-21
24-21
24-21

24-23
24-23
24-24
24-24
24-24
24-25
24-25

24-25

24-26

24-26
24-27

24-30
24-30
24-31
24-32
24-33

24-35
24-35
24-36
24-36

24-37
24-37
24-37
24-37
24-38
24-38
24-39

24-40

24-41

xxxiii

xxxiv

Contents

Distributed Pipelining
What Is Distributed Pipelining?
Benefits and Costs of Distributed Pipelining
Requirements for Distributed Pipelining
Specify Distributed Pipelining
Limitations of Distributed Pipelining
Distributed Pipelining Report
Selected Bibliography

Hierarchical Distributed Pipelining
What Is Hierarchical Distributed Pipelining?
How Hierarchical Distributed Pipelining Works
Benefits of Hierarchical Distributed Pipelining
Specify Hierarchical Distributed Pipelining
Limitations of Hierarchical Distributed Pipelining
Hierarchical Distributed Pipelining Report
Selected Bibliography

Constrained Output Pipelining
What Is Constrained Output Pipelining?
When to Use Constrained Output Pipelining
Requirements for Constrained Output Pipelining
Specify Constrained Output Pipelining
Limitations of Constrained Output Pipelining

Clock-Rate Pipelining
Rationale for Clock-Rate Pipelining
How Clock-Rate Pipelining Works
Clock-Rate Pipelining and Hierarchy Flattening
Clock-Rate Pipelining for DUT Output Ports
Best Practices for Clock-Rate Pipelining
Specify Clock-Rate Pipelining
Limitations for Clock-Rate Pipelining

Adaptive Pipelining
BestPractices
Supported Blocks
LookupTables
Product, Gain, Multiply-Add, and Multiply-

Accumulate
Rate Transition and Downsample
Specify Adaptive Pipelining
Adaptive Pipelining Report

Critical Path Estimation Without Running Synthesis . 24-70

How Critical Path Estimation Works 24-71
How to Use Critical Path Estimation 24-73
Characterized Blocks 24-74
Caveatso 24-78
Subsystem Optimizations for Filters 24-81
Sharing 24-81
Streaming 24-81
Pipelining 24-82
Area Reduction of Filter Subsystem 24-82
Area Reduction of Multichannel Filter Subsystem 24-86
Dead Code Elimination 24-93

Code Generation Reports, HDL Compatibility
Checker, Block Support Library, and Code

Annotation
25|

Create and Use Code Generation Reports 25-2
Report Generation 25-2
Code Generation Report 25-2
Summary 25-2
Code Interface Report 25-3
Timing and Area Report 25-3
Optimization Report 25-3

Navigate Between Simulink Model and HDL Code by
Using Traceability 25-5
How Traceability Works 25-5
Generate Traceability Report 25-6
ReportLocation 25-7
View the Traceability Report 25-7
Code-to-Model Navigation 25-9
Model-to-Code Navigation 25-10
Traceability Report Limitations 25-11
Web View of Model in Code Generation Report 25-13
About Model Web View 25-13

Generate HTML Code Generation Report with Model Web

VIeW 25-13
Model Web View Limitations 25-15
Generate Code with Annotations or Comments 25-16
Simulink Annotations 25-16
Signal Descriptions 25-16
Text Comments 25-17
Requirements Comments and Hyperlinks 25-17
Check Your Model for HDL Compatibility 25-21
Show Blocks Supported for HDL Code Generation 25-23
Show Supported Blocks in Library Browser 25-23
Reset Library Browser to Show All Blocks 25-25
Trace Code Using the Mapping File 25-27
Add or Remove the HDL Configuration Component ... 25-30
What Is the HDL Configuration Component? 25-30
Adding the HDL Coder Configuration Component To
aModel 25-30
Removing the HDL Coder Configuration Component From
aModel 25-31

HDL Coding Standards

26

HDL Coding Standard Report 26-2
Rule Summary i 26-2
Rule Hierarchy 26-3
Rule and Report Customization 26-3
How to Fix Warnings and Errors 26-3

HDL Coding Standards 26-4

Generate an HDL Coding Standard Report from

Simulink 26-6
Using the HDL Workflow Advisor 26-6
Using the Command Line 26-8

Contents

Basic Coding Practices 26-10

1.A General Naming Conventions 26-11
1.B General Guidelines for Clocks and Resets 26-20
1.C Guidelines for Initial Reset 26-21
1.D Guidelines for Clockscovuuun. 26-22
1.F Guidelines for Hierarchical Design 26-24
RTL Description Techniques 26-25
2.A Guidelines for Combinational Logic 26-26
2.B Guidelines for “Always” Constructs of Combinational
Logic 26-35
2.C Guidelines for Flip-Flop Inference 26-37
2.D Guidelines for Latch Description 26-43
2.E Guidelines for Tristate Buffer 26-44
2.F Guidelines for Always/Process Construct with Circuit
Structure into Account 26-46
2.G Guidelines for “IF” Statement Description 26-47
2.H Guidelines for “CASE” Statement Description . . . 26-50
2.1 Guidelines for “FOR” Statement Description 26-54
2.] Guidelines for Operator Description 26-56
2.K Guidelines for Finite State Machine Description .. 26-62
RTL Design Methodology Guidelines 26-64
3.A Guidelines for Creating Function Libraries 26-64
3.B Guidelines for Using Function Libraries 26-66
3.C Guidelines for Test Facilitation Design 26-69
Generate an HDL Lint Tool Script 26-71
How to Generate an HDL Lint Tool Script 26-71

Interfacing Subsystems and Models to HDL Code

27

Model Referencing for HDL Code Generation 27-2
Benefits of Model Referencing for Code Generation . . . 27-2
How To Generate Code for a Referenced Model 27-2
Limitations i 27-3

Generate Black Box Interface for Subsystem 27-4
What Is a Black Box Interface? 27-4

xxxvii

Generate a Black Box Interface for a Subsystem

Generate Code for a Black Box Subsystem
Implementation

Restriction for Multirate DUTs

Generate Black Box Interface for Referenced Model . . .
When to Generate a Black Box Interface
How to Generate a Black Box Interface
Caveats and Limitations

Integrate Custom HDL Code Using DocBlock
When To Use DocBlock to Integrate Custom Code . . .
How To Use DocBlock to Integrate Custom Code
Restrictions i
Example

Customize Black Box or HDL Cosimulation
Interface
Interface Parameters

Specify Bidirectional Ports
Requirements
How To Specify a Bidirectional Port
Limitations i

Generate Reusable Code for Atomic Subsystems
Requirements for Generating Reusable Code for Atomic
Subsystems
Generate Reusable Code for Atomic Subsystems
Generate Reusable Code for Atomic Subsystems with
Tunable Mask Parameters

Create a Xilinx System Generator Subsystem
Why Use Xilinx System Generator Subsystems?
Requirements for Xilinx System Generator

Subsystems
How to Create a Xilinx System Generator Subsystem .
Limitations for Code Generation from Xilinx System

Generator Subsystems

Create an Altera DSP Builder Subsystem

Why Use Altera DSP Builder Subsystems?
Requirements for Altera DSP Builder Subsystems

xxxviii Contents

How to Create an Altera DSP Builder Subsystem 27-31
Determine Clocking Requirements for Altera DSP Builder

Subsystems 27-31
Limitations for Code Generation from Altera DSP Builder
Subsystems 27-32
Using Xilinx System Generator for DSP with HDL
Coder 27-33
Choose a Test Bench for Generated HDL Code 27-37
Generate a Cosimulation Model 27-40
What Is A Cosimulation Model? 27-40
Generating a Cosimulation Model from the GUI 27-41
Structure of the Generated Model 27-47
Launching a Cosimulation 27-53
The Cosimulation ScriptFile 27-56
Complex and Vector Signals in the Generated Cosimulation
Model 27-58
Generating a Cosimulation Model from the Command
Line 27-59
Naming Conventions for Generated Cosimulation Models
and Scripts 27-59
Limitations for Cosimulation Model Generation 27-60
Pass-Through and No-Op Implementations 27-61
Synchronous Subsystem Behavior with the State Control
Block e 27-62
What Is a State Control Block? 27-62
State Control Block Modes 27-62
Synchronous Badge for Subsystems by Using Synchronous
Mode 27-63
Generate HDL Code with the State Control Block 27-65
Enable and Reset Hardware Simulation Behavior 27-67

xXxxix

x1

Stateflow HDL Code Generation Support

28

Introduction to Stateflow HDL Code Generation 28-2
OVeIVIBW . . oot e e 28-2
Commentsoiiii 28-2
Example 28-3
Restrictions 28-3

Hardware Realization of Stateflow Semantics 28-4

Generate HDL for Mealy and Moore Finite State

Machines 28-5
OVETVIEW . . ottt e et e e et e 28-5
Generating HDL Code for a Moore Finite State

Machine 28-5
Generating HDL for a Mealy Finite State Machine 28-9
Design Patterns Using Advanced Chart Features 28-13
Temporal Logic oo, 28-13
Graphical Function 28-15
Hierarchy and Parallelism 28-17
StatelessChartscoviiiiivn.... 28-17
TruthTables 28-19

Generating HDL Code with the MATLAB Function

Block
HDL Applications for the MATLAB Function Block 29-2
Viterbi Decoder with the MATLAB Function Block 29-3
Code Generation from a MATLAB Function Block 29-4
Counter Model Using the MATLAB Function block 29-4
Setting Upo 29-6
Creating the Model and Configuring General
Model Settings i 29-7
Adding a MATLAB Function Block to the Model 29-8

Contents

Set Fixed-Point Options for the MATLAB Function

Block ...
Programming the MATLAB Function Block
Constructing and Connecting the DUT eML Block

Subsystem
Compiling the Model and Displaying Port Data

TYPES o
Simulating the eml hdl incrementer tut Model
Generating HDLCode

Generate Instantiable Code for Functions
How To Generate Instantiable Code for Functions . . .
Generate Code Inline for Specific Functions
Limitations for Instantiable Code Generation for

Functions

MATLAB Function Block Design Patterns for HDL . . .
The eml hdl design patterns Library
Efficient Fixed-Point Algorithms
Model State Using Persistent Variables
Creating Intellectual Property with the MATLAB Function

Block ...
Nontunable Parameter Arguments
Modeling Control Logic and Simple Finite State

Machines il
Modeling Counters
Modeling Hardware Elements

Design Guidelines for the MATLAB Function Block . ..
Use Compiled External Functions With MATLAB Function
Blocks
Build the MATLAB Function Block Code First
Use the hdlfimath Utility for Optimized
FIMATH Settings
Use Optimal Fixed-Point Option Settings
Set the Output Data Type of MATLAB Function Blocks
Explicitly

Distributed Pipeline Insertion for MATLAB Function
Blocks e
OVETVIEW . . vttt e e e e e e
Distributed Pipelining in a Multiplier Chain

29-12

29-15
29-16
29-17

29-20
29-20
29-21

29-21
29-22
29-22
29-24
29-27

29-28
29-29

29-29
29-30
29-31
29-33

29-33
29-33

29-33
29-34

29-34

29-35
29-35
29-35

xli

xlii

Contents

Generating Scripts for HDL Simulators and
Synthesis Tools

30

Generate Scripts for Compilation, Simulation, and

Synthesis 30-2
Structure of Generated Script Files 30-3
Properties for Controlling Script Generation 30-4

Enabling and Disabling Script Generation 30-4
Customizing Script Names 30-4
Customizing Script Code 30-5
Examples 30-7
Configure Compilation, Simulation, Synthesis, and
LintScripts 30-8
Compilation Script Options 30-9
Simulation Script Options 30-11
Synthesis Script Options 30-13
Add Synthesis Attributes 30-18
Configure Synthesis Project Using Tcl Script 30-19

Using the HDL Workflow Advisor

31

Getting Started with the HDL Workflow Advisor 31-2
Open the HDL Workflow Advisor 31-2
Run Tasks in the HDL Workflow Advisor 31-3
Fix HDL Workflow Advisor Warnings or Failures 314
Save and Restore the HDL Workflow Advisor State 31-5
View and Save HDL Workflow Advisor Reports 31-7

Generate Test Bench and Enable Code Coverage Using the
HDL Workflow Advisor 31-10

Generate HDL Code for FPGA Floating-Point Target

Libraries 31-14
Setup for FPGA Floating-Point Library Mapping 31-14
Map to an FPGA Floating-Point Library 31-15
View Code Generation Reports of Floating-Point Library
Mapping . ..o v 31-17
Analyze Results of Floating-Point Library Mapping ... 31-19
Customize Floating-Point IP Configuration 31-23
Customize the IP Latency with Target Frequency 31-24
Customize the IP Latency with Latency Strategy 31-28
HDL Coder Support for FPGA Floating-Point Library
Mapping i 31-34
Supported Blocks That Map to FPGA Floating-Point Target
TP 31-34
Supported Blocks That Do Not Need to Map to FPGA
Floating-Point Target IP 31-37
Limitations for FPGA Floating-Point Library
Mappingot 31-38
Synthesis Objective to Tcl Command Mapping 31-39
AlteraQuartusIl 31-39
Xilinx Vivado 2014.4 31-40
Xilinx ISE 14.7 with PlanAhead 31-40
Run HDL Workflow witha Script 31-42
Export an HDL Workflow Script 31-43
Enable or Disable Tasks in HDL Workflow Script 31-43
Run a Single Workflow Task 31-43
Import an HDL Workflow Script 31-44
Generic ASIC/FPGA Workflow Script Example 31-44
FPGA-in-the-Loop Script Example 31-46
FPGA Turnkey Workflow Script Example 31-48
IP Core Generation Workflow Script Example 31-51

Simulink Real-Time FPGA I/O Workflow Example 31-54

xliii

xliv

Contents

Simscape to HDL Workflow

32

Generate HDL Code from Simscape Models 32-2

Deploy Simscape™ Plant Models to Speedgoat FPGA 1/0
Modules, 32-17

Troubleshoot Conversion of Simscape DC Motor Control to
HDL-Compatible Simulink Model 32-30

Troubleshoot Conversion of Simscape™ Permanent
Magnet Synchronous Motor to HDL-Compatible

33|

Simulink Model 32-40
HDL Test Bench

Test Bench Generation 33-2
How Test Bench Generation Works 33-2

Test Bench DataFiles 33-2

Test Bench Data Type Limitations 33-3

Use Constants Instead of File I/O 33-3

Test Bench Block Restrictions 33-5

FPGA Board Customization

34

FPGA Board Customization 34-2
Feature Description 34-2
Custom Board Management 34-2
FPGA Board Requirements 34-3

Create Custom FPGA Board Definition 34-8

Create Xilinx KC705 Evaluation Board Definition

File e
OVeIVIBW . o ittt i e e e e e
What You Need to Know Before Starting
Start New FPGA Board Wizard
Provide Basic Board Information
Specify FPGA Interface Information
Enter FPGA Pin Numbers
Run Optional Validation Tests
Save Board Definition File
Use New FPGABoard

FPGA Board Manager
Introduction
Filter
Search e
FIL Enabled/Turnkey Enabled
Create Custom Board
Add Board from File
GetMoreBoards
View/Edit
Remove
Clone i e
Validate

New FPGA Board Wizard
Basic Information
Interfaces e
FILI/O .. e
Turnkey /O o
Validation
Finish

FPGA Board Editor
GeneralTab
InterfaceTab

xlv

HDL Workflow Advisor Tasks

35

HDL Workflow Advisor Tasks 35-2
HDL Workflow Advisor Tasks Overview 35-4
Set Target Overview 35-5
Set Target Device and Synthesis Tool 35-5
Set Target Reference Design 35-6
Set Target Interface 35-7
Set Target Frequency 35-7
Set Target Interface 35-8
Set Target Interface 35-9
Prepare Model For HDL Code Generation Overview .. 35-10
Check Global Settings 35-11
Check AlgebraicLoopst 35-11
Check Block Compatibility 35-12
Check Sample Times 35-12
Check FPGA-In-The-Loop Compatibility 35-13
HDL Code Generation Overview 35-13
Set Code Generation Options Overview 35-14
SetBasicOptions 35-14
Set ReportOptions 35-15
Set Advanced Options 35-15
Set Optimization Options 35-15
Set Testbench Options 35-15
Generate RTLCode, 35-16
Generate RTL Code and Testbench 35-16
Verify with HDL Cosimulation 35-17
Generate RTL CodeandIPCore 35-17
FPGA Synthesis and Analysis Overview 35-18
Create Project 35-18
Perform Synthesis and P/R Overview 35-19
Perform Logic Synthesis 35-20
Perform Mapping, 35-20
Perform Placeand Route 35-21
Run Synthesis 35-22
Run Implementation 35-22
Annotate Model with Synthesis Result 35-22
Download to Target Overview 35-23
Generate Programming File 35-24
Program Target Device 35-24
Generate Simulink Real-Time Interface 35-24
Save and Restore HDL Workflow Advisor State 35-24

xlvi Contents

FPGA-In-The-Loop Implementation 35-25

Set FPGA-In-The-Loop Options 35-25
Build FPGA-In-The-Loop 35-25
Check USRP® Compatibility 35-26
Generate FPGA Implementation 35-26
Check SDR Compatibility 35-26
SDR FPGA Implementation 35-27
SetSDROptions 35-27
BuildSDR 35-28
Embedded System Integration 35-29
Create Project, 35-29
Generate Software Interface Model 35-29
Build FPGA Bitstream 35-29
Program Target Device 35-30

36

HDL Model Checker Overview 36-3
Model configurationchecks 36-5
Check for safe model parameters 36-6
Description i 36-6
Results and Recommended Actions 36-7
See AlSO 36-7
Check for global reset setting for Xilinx and Altera
devices 36-8
Description 36-8
Results and Recommended Actions 36-8
SEe AlSO 36-8
Check inline configurations setting 36-9
Description 36-9
Results and Recommended Actions 36-9
SEe AlSO 36-9
Check algebraicloops 36-10
Description 36-10

xlvii

Results and Recommended Actions
See AlSO ...

Check for visualization settings
Description i
Results and Recommended Actions
SEEAISO ...

Check delay balancing setting
Description i,
Results and Recommended Actions
See AlSO ...

Check for ports and subsystems

Check for invalid top level subsystem
Description
Results and Recommended Actions

Check initial conditions of enabled and triggered
subsystems
Description0 i
Results and Recommended Actions
See AlSO

Check for blocks and block settings

Check for infinite and continuous sample
timesources
Description i
Results and Recommended Actions
SEEAISO ...

Check for unsupported blocks
Description i
Results and Recommended Actions

Check for large matrix operations
Description i
Results and Recommended Actions
See AlSO

xlviii Contents

Check for MATLAB Function block settings 36-20

Descriptioniiiiiiii i 36-20
Results and Recommended Actions 36-20
SEe AlSO 36-20
Check for Stateflow chart settings 36-21
Descriptioniiiii i 36-21
Results and Recommended Actions 36-21
SEe AlSO 36-21
Native Floating Point Checks 36-22
Check for single datatypes in the model 36-23
Description i 36-23
Results and Recommended Actions 36-23
See AlsO 36-23
Check for double datatypes in the model with Native
Floating Point 36-24
Description 36-24
Results and Recommended Actions 36-24
See AlSO 36-24
Check for Data Type Conversion blocks with incompatible
settings 36-25
Descriptionc.o i 36-25
Results and Recommended Actions 36-25
See AlSO 36-25
Check for HDL Reciprocal block usage 36-26
Description i 36-26
Results and Recommended Actions 36-26
SEe AlSO 36-26
Check for Relational Operator block usage 36-27
Descriptioniiii i 36-27
Results and Recommended Actions 36-27
See AlSO 36-27
Check for unsupported blocks with Native Floating
Point 36-28
Description i 36-28
Results and Recommended Actions 36-28

xlix

1

Contents

See AlSO .. .o

Check for blocks with nonzero output latency
Description i
Results and Recommended Actions
SEe AlSO

Check blocks with nonzeroulperror
Description i
Results and Recommended Actions
See AlSO

Industry standard checks

Check VHDL file extension
Description
Results and Recommended Actions
See AlSO

Check naming conventions
Descriptiono i
Results and Recommended Actions
SEe AlSO

Check top-level subsystem/port names
Descriptioniiiiiii i
Results and Recommended Actions
See AlSO

Check module/entitynames
Description i
Results and Recommended Actions
SEEAISO ...

Check signal and port names
Description i
Results and Recommended Actions
See AlSO

Check package filenames
Description i
Results and Recommended Actions
See AlSO

36-29
36-29
36-29
36-29

36-30
36-30
36-30
36-30

36-31

Checkgenerics 36-38

Descriptioniiiiiiii 36-38
Results and Recommended Actions 36-38
SEe AlISO . .. 36-38
Check clock, reset, and enable signals 36-39
Description i 36-39
Results and Recommended Actions 36-39
SEEAISO ... 36-39
Check architecturename 36-40
Description i 36-40
Results and Recommended Actions 36-40
See AlSO ... 36-40
Check entity and architecture 36-41
Description i 36-41
Results and Recommended Actions 36-41
See AlSO ... 36-41
Check clock settings 36-42
Description 36-42
Results and Recommended Actions 36-42
See AlSO ... 36-42

Using the HDL Model Checker

37

Getting Started with the HDL Model Checker 37-2
Open the HDL Model Checker 37-2
Run Checks In the HDL Model Checker 37-3
Fix HDL Model Checker Warnings or Failures 37-4
View and Save HDL Model Checker Reports 37-5
Run Model Advisor Checks for HDL Coder 37-7
Open the Model Advisor Checks 37-7
Run Checks in the Model Advisor 37-8
Run Checks In Background 37-8
Display Check Results in the Model Advisor Report . . . 37-9
Fix Warnings or Failures 37-10

li

Save and Restore Model Advisor State 37-12

Model Checks in HDLCoder 37-13
Model configuration checks 37-14
Checks for ports and subsystems 37-15
Checks for blocks and block settings 37-15
Native Floating Point checks 37-16
industry standard checks 37-17

Hardware-Software Codesign

Hardware-Software Co-Design Basics

38

Custom IP Core Generation 38-2
Custom IP Core Architectures 38-2
Target Platform Interfaces 38-3
Processor/FPGA Synchronization 38-3
Custom IP Core Generated Files 38-4

Custom IPCoreReport 38-5
Summary 38-5
Target Interface Configuration 38-6
Register Address Mapping 38-6
[PCoreUserGuide 38-7
[IPCoreFile List s 38-10

Generate a Board-Independent IP Core from

Simulink 38-12
Generate a Board-Independent IPCore 38-12
Requirements and Limitations for IP Core

Generationcoiiiiiiii 38-15

Processor and FPGA Synchronization 38-16
Free RunningMode 38-16
Coprocessing - BlockingMode 38-17
Coprocessing - Nonblocking With Delay Mode 38-17

lii Contents

IP Caching for Faster Reference Design Synthesis . . .
Requirements for Using IP Caching
WhatIsanIPCache?
How IP CachingWorks
EnableIPCaching
IP Caching in HDL Coder Reference Designs
IP Caching in Custom Reference Designs

Resolve Timing Failures in IP Core Generation and
Simulink Real-Time FPGA 1/O Workflows
Step 1: Identify the Timing Failure
Step 2: Find the Critical Path
Step 3: Resolve Timing Failures

Define and Add IP Repository to Custom Reference
Design i
Create an IP Repository Folder Structure
Define IP List Function
Add IP List Function to Reference Design Project

Meet Timing Requirements Using Enable-Based
Multicycle Path Constraints
How Enable-Based Multicycle Path Constraints
Work
Specify Enable-Based Constraints
Benefits of Using Enable-Based Constraints
Modeling Guidelines
Multicycle Path Constraints for Various Synthesis
Tools
Caveats and Limitations

Program Target FPGA Boards or SoC Devices
How to Program Target Device
Programming Methods

38-19
38-19
38-19
38-20
38-21
38-22
38-25

38-27
38-27
38-30
38-34

38-39
38-39
38-41
38-42

Target SoC Platforms and Speedgoat Boards

39

Hardware-Software Co-Design Workflow for SoC

Platforms

liii

liv

Contents

Model Design for AX14 Slave Interface Generation . . .
Considerationscoiiiiiiinnn...
Map Scalar Ports to AX14 Slave Interface
Map Vector Ports to AXI4 Slave Interface
Read Back Value of AXI4 Slave Interfaces

Model Design for AXI4-Stream Interface Generation .
Simplified Streaming Protocol
Map Scalar Ports To AXI4-Stream Interface
Map Vector Ports To AX14-Stream Interface
Model Designs with Multiple Sample Rates
Restrictions i i

Multirate IP Core Generation

Board and Reference Design Registration System
Board, IP Core, and Reference Design Definitions
Board Registration Files
Reference Design Registration Files
Predefined Board and Reference Design Examples . . .

Registera Custom Board
DefineaBoard
CreateaBoard Plugin
Define a Board Registration Function

Register a Custom Reference Design
Define a Reference Design
Create a Reference Design Plugin
Define a Reference Design Registration Function

Define Custom Parameters and Callback Functions for
Custom Reference Design

39-11
39-11
39-11
39-13
39-14

39-18
39-18
39-19
39-21
39-23
39-23

39-25

39-31
39-31
39-32
39-33
39-34

39-35
39-35
39-36
39-37

39-39
39-39
39-40
39-41

39-43

Define Custom Parameters and Register Callback Function

Handle
Define Custom Callback Functions

FPGA Programming and Configuration

Model Design for AXI4-Stream Video Interface

Generation,
Streaming Pixel Protocol
Protocol Signals and Timing Diagrams

39-43
39-47

39-49

39-61

39-61
39-62

Model Data and Control Bus Signals
Model Designs with Multiple Sample Rates

Video Porch Insertion Logic
Default Video System Reference Design
Restrictions i

Model Design for AX14 Master Interface Generation . .
Simplified AXI4 Master Protocol - Write Channel
Simplified AXI4 Master Protocol - Read Channel
Base Address Register Calculation
Modeling for AXI4 Master Interfaces
Model Designs with Multiple Sample Rates
Reference Designs for IP Core Integration
Restrictions i i

IP Core Generation Workflow for Standalone
FPGADevicesciiiiiiiiinnnnnnn.
Targeting FPGA Reference Designs with AXI4
Interface
Targeting FPGA Reference Designs Without AXI4
Interface
Board Support

IP Core Generation Workflow for Speedgoat I/
OModules L.

39-83

39-85

39-86
39-86

39-88

v

HDL Code Generation from
MATLAB

57

Functions Supported for HDL Code
Generation

* “Functions Supported for HDL Code Generation — Alphabetical List” on page 1-2
* “Functions Supported for HDL Code Generation — Categorical List” on page 1-10

1 Functions Supported for HDL Code Generation

Functions Supported for HDL Code Generation —

Alphabetical List

You can generate efficient HDL code for a subset of MATLAB built-in functions and
toolbox functions that you call from MATLAB code. These functions appear in alphabetical
order in the following table.

To find supported functions by MATLAB category or toolbox, see “Functions Supported
for HDL Code Generation — Categorical List” on page 1-10.

Name Product Remarks and Limitations

abs Fixed-Point Designer™ Double and complex data types
not supported.

add Fixed-Point Designer —

all Fixed-Point Designer Double data type not supported.

and MATLAB —

any Fixed-Point Designer Double data type not supported.

bitand MATLAB —

bitand Fixed-Point Designer —

bitandreduce Fixed-Point Designer —

bitcmp MATLAB —

bitcmp Fixed-Point Designer —

bitconcat Fixed-Point Designer —

bitget MATLAB —

bitget Fixed-Point Designer —

bitor MATLAB —

bitor Fixed-Point Designer —

bitorreduce Fixed-Point Designer —

bitreplicate Fixed-Point Designer —

bitrol Fixed-Point Designer —

bitror Fixed-Point Designer —

1-2

Functions Supported for HDL Code Generation — Alphabetical List

Name Product Remarks and Limitations

bitset MATLAB —

bitset Fixed-Point Designer —

bitshift MATLAB For efficient HDL code
generation, use the Fixed-Point
Designer functions bits11,
bitsrl, or bitsra instead of
bitshift.

bitshift Fixed-Point Designer —

bitsliceget Fixed-Point Designer —

bitsll Fixed-Point Designer —

bitsra Fixed-Point Designer —

bitsrl Fixed-Point Designer —

bitxor MATLAB —

bitxor Fixed-Point Designer —

bitxorreduce Fixed-Point Designer —

ceil Fixed-Point Designer —

complex MATLAB —

complex Fixed-Point Designer —

conj Fixed-Point Designer —

convergent Fixed-Point Designer —

ctranspose MATLAB —

ctranspose Fixed-Point Designer —

1-3

1 Functions Supported for HDL Code Generation

Name Product Remarks and Limitations

divide Fixed-Point Designer * For HDL Code generation,
the divisor must be a
constant and a power of two.

* Non-fi inputs must be
constant; that is, their values
must be known at compile
time so that they can be cast
to i objects.

* Complex and imaginary
divisors are not supported.

* Code generation in MATLAB
does not support the syntax
T.divide(a,b).

end Fixed-Point Designer —
eps Fixed-Point Designer * Supported for scalar fixed-
point signals only.

* Supported for scalar, vector,
and matrix, fi single and fi
double signals.

eq MATLAB —
eq Fixed-Point Designer —
fi Fixed-Point Designer —
fimath Fixed-Point Designer —
fix Fixed-Point Designer —
floor Fixed-Point Designer —

1-4

Functions Supported for HDL Code Generation — Alphabetical List

Name Product Remarks and Limitations

for MATLAB Do not use for loops without
static bounds.
Do not use the & and |
operators within conditions of a
for statement. Instead, use the
&& and | | operators.
HDL Coder does not support
nonscalar expressions in the
conditions of for statements.
Instead, use the all or any
functions to collapse logical
vectors into scalars.

ge MATLAB —

ge Fixed-Point Designer —

getlsb Fixed-Point Designer —

getmsb Fixed-Point Designer —

gt MATLAB —

gt Fixed-Point Designer —

horzcat Fixed-Point Designer —

if MATLAB Do not use the & and |
operators within conditions of
an if statement. Instead, use
the && and | | operators.
HDL Coder does not support
nonscalar expressions in the
conditions of if statements.
Instead, use the all or any
functions to collapse logical
vectors into scalars.

imag MATLAB —

imag Fixed-Point Designer —

1-5

1 Functions Supported for HDL Code Generation

Name

Product

Remarks and Limitations

int8, int16, int32

Fixed-Point Designer

iscolumn

Fixed-Point Designer

isempty Fixed-Point Designer —
isequal Fixed-Point Designer —
isfi Fixed-Point Designer —
isfimath Fixed-Point Designer —
isfimathlocal Fixed-Point Designer —
isfinite Fixed-Point Designer —
isinf Fixed-Point Designer —
isnan Fixed-Point Designer —
isnumeric Fixed-Point Designer —
isnumerictype Fixed-Point Designer —
isreal Fixed-Point Designer —
isrow Fixed-Point Designer —
isscalar Fixed-Point Designer —
issigned Fixed-Point Designer —
isvector Fixed-Point Designer —
le MATLAB —
le Fixed-Point Designer —
length Fixed-Point Designer —
logical Fixed-Point Designer —
lowerbound Fixed-Point Designer —
1lsb Fixed-Point Designer —
1t MATLAB —
1t Fixed-Point Designer —
max Fixed-Point Designer —
min Fixed-Point Designer —
minus Fixed-Point Designer —

1-6

Functions Supported for HDL Code Generation — Alphabetical List

Name Product Remarks and Limitations

mpower MATLAB Both inputs must be scalar, and
the exponent input, k, must be
an integer.

mpower Fixed-Point Designer Both inputs must be scalar, and

the exponent input, k, must be a
constant integer.

mtimes (A, B)

MATLAB

mtimes Fixed-Point Designer —

ndims Fixed-Point Designer —

ne MATLAB —

ne Fixed-Point Designer —

nearest Fixed-Point Designer —

not MATLAB —

numberofelements Fixed-Point Designer —

numerictype Fixed-Point Designer —

ones MATLAB Dimensions must be real,
nonnegative integers.

or MATLAB —

plus MATLAB Inputs cannot be data type
logical.

plus Fixed-Point Designer Inputs cannot be data type
logical.

power MATLAB Both inputs must be scalar, and
the exponent input, k, must be
an integer.

power Fixed-Point Designer Both inputs must be scalar, and
the exponent input, k, must be a
constant integer.

range Fixed-Point Designer —

real MATLAB —

real Fixed-Point Designer —

1-7

1 Functions Supported for HDL Code Generation

Name Product Remarks and Limitations

realmax Fixed-Point Designer —

realmin Fixed-Point Designer —

reinterpretcast Fixed-Point Designer —

repmat Fixed-Point Designer —

rescale Fixed-Point Designer —

reshape Fixed-Point Designer —

round Fixed-Point Designer —

sfi Fixed-Point Designer —

sign Fixed-Point Designer —

size Fixed-Point Designer —

sqrt Fixed-Point Designer —

sub Fixed-Point Designer —

subsasgn Fixed-Point Designer Supported data types for HDL
code generation are listed in
“Supported MATLAB Data
Types, Operators, and Control
Flow Statements” on page 2-
2.

subsref Fixed-Point Designer Supported data types for HDL
code generation are listed in
“Supported MATLAB Data
Types, Operators, and Control
Flow Statements” on page 2-
2.

sum Fixed-Point Designer —

1-8

Functions Supported for HDL Code Generation — Alphabetical List

Name

Product

Remarks and Limitations

switch

MATILAB

The conditional expression in a
switch or case statement
must use only:

e uint8, uintl16, uint32,
int8, int16, or int32 data
types

¢ Scalar data

If multiple case statements
make assignments to the same
variable, the numeric type and
fimath specification for that
variable must be the same in
every case statement.

times

MATLAB

Inputs cannot be data type
logical.

times

Fixed-Point Designer

Inputs cannot be data type
logical.

transpose

MATLAB

transpose

Fixed-Point Designer

ufi

Fixed-Point Designer

uint8, uintl6, uint32

Fixed-Point Designer

uminus

Fixed-Point Designer

uplus Fixed-Point Designer Inputs cannot be data type
logical.

upperbound Fixed-Point Designer —

vertcat Fixed-Point Designer —

Xxor MATLAB —

zeros MATLAB Dimensions must be real,

nonnegative integers.

1-9

1 Functions Supported for HDL Code Generation

Functions Supported for HDL Code Generation —
Categorical List

1-10

In this section...

“Arithmetic Operations in MATLAB” on page 1-11
“Bitwise Operations in MATLAB” on page 1-11
“Complex Numbers in MATLAB” on page 1-11
“Control Flow in MATLAB” on page 1-12
“Logical Operators in MATLAB” on page 1-12
“Arrays in MATLAB” on page 1-13

“Relational Operators in MATLAB” on page 1-13
“ Fixed-Point Designer ” on page 1-13

In this section...

“Arithmetic Operations in MATLAB” on page 1-11
“Bitwise Operations in MATLAB” on page 1-11
“Complex Numbers in MATLAB” on page 1-11
“Control Flow in MATLAB” on page 1-12
“Logical Operators in MATLAB” on page 1-12
“Arrays in MATLAB” on page 1-13

“Relational Operators in MATLAB” on page 1-13

“ Fixed-Point Designer ” on page 1-13

You can generate efficient HDL code for a subset of MATLAB built-in functions and
toolbox functions that you call from MATLAB code. These functions are listed by MATLAB
category or toolbox category in the following tables.

For an alphabetical list of supported functions, see “Functions Supported for HDL Code
Generation — Alphabetical List” on page 1-2.

Functions Supported for HDL Code Generation — Categorical List

Arithmetic Operations in MATLAB

Name

Remarks and Limitations

ctranspose(A)

mpower (A,B)

A and B must be scalar, and B must be an integer.

mtimes (A,B)

plus(A,B) Neither A nor B can be data type logical.
power (A,B) A and B must be scalar, and B must be an integer.
times (A, B) Neither A nor B can be data type Logical.
transpose(A) —

Bitwise Operations in MATLAB

Name

Remarks and Limitations

bitand

bitcmp

bitget

bitor

bitset

bitshift

For efficient HDL code generation, use the Fixed-Point Designer
functions bits11, bitsrl, or bitsra instead of bitshift.

bitxor

Complex Numbers in MATLAB

Name

Remarks and Limitations

complex

imag

real

1-11

1 Functions Supported for HDL Code Generation

Control Flow in MATLAB

Name

Remarks and Limitations

for

Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for
statement. Instead, use the && and | | operators.

HDL Coder does not support nonscalar expressions in the
conditions of for statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

if

Do not use the & and | operators within conditions of an if
statement. Instead, use the && and | | operators.

HDL Coder does not support nonscalar expressions in the
conditions of if statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

switch

The conditional expression in a switch or case statement must
use only:

e uint8, uintl6, uint32, int8, int16, or int32 data types
* Scalar data

If multiple case statements make assignments to the same

variable, the numeric type and fimath specification for that
variable must be the same in every case statement.

Logical Operators in MATLAB

Name

Remarks and Limitations

and

not

or

xXor

1-12

Functions Supported for HDL Code Generation — Categorical List

Arrays in MATLAB

Name Remarks and Limitations
ones Dimensions must be real, nonnegative integers.
zeros Dimensions must be real, nonnegative integers.

Relational Operators in MATLAB

Name Remarks and Limitations

eq —

ge -

gt —

le —

Fixed-Point Designer

HDL code generation support for fixed-point run-time library functions from the Fixed-
Point Designer is summarized in the following table. See “Fixed-Point Function
Limitations” on page 2-36 for general limitations of fixed-point run-time library functions
for code generation.

Function Remarks and Limitations

abs Double and complex data types not supported.

add —

all Double data type not supported.

any Double data type not supported.

bitand —

bitandreduce —

bitcmp —

bitconcat —

1-13

1 Functions Supported for HDL Code Generation

Function

Remarks and Limitations

bitget

bitor

bitorreduce

bitreplicate

bitrol

bitror

bitset

bitshift

bitsliceget

bitsll

bitsra

bitsrl

bitxor

bitxorreduce

ceil

complex

conj

convergent

ctranspose

divide

For HDL Code generation, the divisor must be a constant and a
power of two.

Non-fi inputs must be constant; that is, their values must be
known at compile time so that they can be cast to fi objects.

Complex and imaginary divisors are not supported.

Code generation in MATLAB does not support the syntax
T.divide(a,b).

end

1-14

Functions Supported for HDL Code Generation — Categorical List

Function Remarks and Limitations

eps * Supported for scalar fixed-point signals only.

* Supported for scalar, vector, and matrix, fi single and fi
double signals.

eq _

fi —

fimath —

fix —

floor —

ge -

getlsb —

getmsb —

gt —

horzcat —

imag —

int8, int16, int32 —

iscolumn —

isempty —

isequal —

isfi —

isfimath —

isfimathlocal —

isfinite —

isinf _

isnan —

isnumeric —

isnumerictype —

isreal —

isrow —

1-15

1 Functions Supported for HDL Code Generation

Function Remarks and Limitations

isscalar —

issigned =

isvector —

le —

length —

logical —

lowerbound —

1sb —

1t —

max s

min —

minus —

mpower Both inputs must be scalar, and the exponent input, k, must be a
constant integer.

mtimes —

ndims —

ne —

nearest =

numberofelements —

numerictype —

ones Dimensions must be real, nonnegative integers.

plus Inputs cannot be data type logical.

power Both inputs must be scalar, and the exponent input, k, must be a
constant integer.

range —

real —

realmax —

realmin —

1-16

Functions Supported for HDL Code Generation — Categorical List

Function Remarks and Limitations

reinterpretcast —

repmat —

rescale —

reshape —

round —

sfi —

sign —

size —

sqrt —

sub —

subsasgn Supported data types for HDL code generation are listed in
“Supported MATLAB Data Types, Operators, and Control Flow
Statements” on page 2-2.

subsref Supported data types for HDL code generation are listed in
“Supported MATLAB Data Types, Operators, and Control Flow
Statements” on page 2-2.

sum —

times Inputs cannot be data type logical.

transpose —

ufi —

uint8, uintl16, uint32

uminus

uplus

Inputs cannot be data type logical.

upperbound

vertcat

1-17

MATLAB Algorithm Design

* “Supported MATLAB Data Types, Operators, and Control Flow Statements”
on page 2-2

* “Persistent Variables and Persistent Array Variables” on page 2-9

* “Complex Data Type Support” on page 2-11

+ “HDL Code Generation for System Objects” on page 2-15

* “Predefined System Objects Supported for HDL Code Generation” on page 2-18
* “Load constants from a MAT-File” on page 2-21

* “Generate Code for User-Defined System Objects” on page 2-22

* “Map Matrices to ROM” on page 2-25

* “Fixed-Point Bitwise Functions” on page 2-26

* “Fixed-Point Run-Time Library Functions” on page 2-32

* “Model State with Persistent Variables and System Objects” on page 2-38
« “Bit Shifting and Bit Rotation” on page 2-42

« “Bit Slicing and Bit Concatenation” on page 2-45

* “Guidelines for Efficient HDL Code” on page 2-47

* “MATLAB Design Requirements for HDL Code Generation” on page 2-48
* “What Is a MATLAB Test Bench?” on page 2-49

» “MATLAB Test Bench Requirements and Best Practices” on page 2-50

2 MATLAB Algorithm Design

Supported MATLAB Data Types, Operators, and Control
Flow Statements

2-2

In this section...

“Supported Data Types” on page 2-2
“Supported Operators” on page 2-4

“Control Flow Statements” on page 2-6

When you generate HDL code from your MATLAB algorithm, use the data types,
operators, and control flow statements that HDL Coder supports.

Supported Data Types

HDL Coder does not support cell arrays and Inf data types. This table shows the
supported subset of MATLAB data types.

Types Supported Data Types Restrictions
Integer * uint8, uintl6, uint32, |In Simulink®, MATLAB Function block
uint64 ports must use numeric types sfix64 or
« int8 int16. int32 ufix64 for 64-bit data.
inte64

Supported MATLAB Data Types, Operators, and Control Flow Statements

Types Supported Data Types Restrictions
Real * double HDL code generated with double or
. single single data types in your MATLAB code
can be used for simulation, but is not
synthesizable. You can generate
synthesizable code when you use these
data types in your Simulink model. For
more information, see:
o “Simulink Blocks Supported with
Native Floating-Point” on page 10-
106
* “Generate Target-Independent HDL
Code with Native Floating-Point” on
page 10-94
* “Signal and Data Type Support” on
page 10-2

Character char -

Logical logical -

Fixed point * Scaled (binary point Fixed-point numbers with slope (not
only) fixed-point equal to 1.0) and bias (not equal to 0.0)
numbers are not supported.

’ }Silll;tom iﬁlﬁgers (0 Maximum word size for fixed-point
yp numbers is 128 bits.

Vectors e unordered {N} The maximum number of vector

e row {1, N} elements allowed is 27 32.
¢ column {N, 1} Before a variable is subscripted, it must
be fully defined.

Matrices {N, M} Matrices are supported in the body of

the design algorithm, but are not
supported as inputs to the top-level
design function.

Do not use matrices in the testbench.

2-3

2 MATLAB Algorithm Design

2-4

Types

Supported Data Types

Restrictions

Structures

struct

Arrays of structures are not supported.

For the FPGA Turnkey and IP Core
Generation workflows, structures are
supported in the body of the design
algorithm, but are not supported as
inputs to the top-level design function.

Enumerations

enumeration

Enumeration values must be
monotonically increasing.

If your target language is Verilog®, all
enumeration member names must be
unique within the design.

Enumerations at the top-level DUT ports
are not supported with the following
workflows or verification methods:

* [P Core Generation workflow

¢ FPGA Turnkey workflow

* FPGA-in-the-Loop

e HDL Cosimulation

Global variables are not supported for HDL code generation.

Supported Operators

Note HDL code generated for large vector and matrix inputs to arithmetic operations
can result in inefficient code. The code for these operators is not automatically pipelined.

Supported MATLAB Data Types, Operators, and Control Flow Statements

Arithmetic Operators

Operation

Operator Syntax

Equivalent
Function

Restrictions

Binary addition

A+B

plus(A,B)

Neither A nor B can
be data type
logical.

Matrix multiplication

A*B

mtimes (A, B)

HDL code generated
for matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise
multiplication

A.*B

times (A,B)

Neither A nor B can
be data type
logical.

Matrix power

A™B

mpower (A, B)

A and B must be
scalar, and B must be
an integer.

HDL code generated
for matrix arithmetic
operations is not
pipelined, and can
result in inefficient
code.

Arraywise power

power (A,B)

A and B must be
scalar, and B must be
an integer.

Complex transpose

A 1

ctranspose(A)

Matrix transpose

A.'

transpose(A)

Matrix concat

[A B]

None

Matrix index

A(r c)

None

Before you use a
variable, you must
fully define it.

2-5

2 MATLAB Algorithm Design

Logical Operators

Operation Operator Syntax M Function Notes
Equivalent

Logical And A&B and (A, B) -
Logical Or A|B or(A,B) -
Logical Xor A xor B xor(A,B) -
Logical And (short |A&SB N/A Use short circuiting
circuiting) logical operators

within conditionals.
Logical Or (short A||B N/A Use short circuiting
circuiting) logical operators

within conditionals.

Element complement |~A not (A) -

Relational Operators

Relation Operator Syntax Equivalent Function
Less than A<B 1t (A,B)
Less than or equal to A<=B le(A,B)
Greater than or equal to A>=B ge(A,B)
Greater than A>B gt(A,B)
Equal ==B eq(A,B)
Not equal A~=B ne(A,B)

Control Flow Statements

HDL Coder supports the following control flow statements and constructs with
restrictions.

2-6

Supported MATLAB Data Types, Operators, and Control Flow Statements

Control Flow
Statement

Restrictions

for

Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for
statement. Instead, use the && and | | operators.

HDL Coder does not support nonscalar expressions in the
conditions of for statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

if

Do not use the & and | operators within conditions of an if
statement. Instead, use the && and | | operators.

HDL Coder does not support nonscalar expressions in the
conditions of if statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

switch

The conditional expression in a switch or case statement must
use only:

e uint8, uintl6, uint32, int8, intl6, or int32 data types
* Scalar data

If multiple case statements make assignments to the same

variable, the numeric type and fimath specification for that
variable must be the same in every case statement.

The following control flow statements are not supported:

* while

* break

* continue
* return

* parfor

Avoid using the following vector functions, as they may generate loops containing break

statements:

+ isequal

2-7

2 MATLAB Algorithm Design

* bitrevorder

2-8

Persistent Variables and Persistent Array Variables

Persistent Variables and Persistent Array Variables

Persistent Variables

Persistent variables enable you to model registers. If you need to preserve state between
invocations of your MATLAB algorithm, use persistent variables.

Before you use a persistent variable, you must initialize it with a statement specifying its
size and type. You can initialize a persistent variable with either a constant value or a
variable, as in the following examples:

% Initialize with a constant

persistent p;

if isempty(p)
p=1fi(0,0,8,0);

end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)

p = initval;
end

Use a logical expression that evaluates to a constant to test whether a persistent variable
has been initialized, as in the preceding examples. Using a logical expression that
evaluates to a constant ensures that the generated HDL code for the test is executed only
once, as part of the reset process.

You can initialize multiple variables within a single logical expression, as in the following

example:

% Initialize with variables
initvall = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;

if isempty(p)
X initvall;
y initval2;

end

2-9

2 MATLAB Algorithm Design

2-10

Note If persistent variables are not initialized as described above, extra sentinel
variables can appear in the generated code. These sentinel variables can translate to
inefficient hardware.

Persistent Array Variables
Persistent array variables enable you to model RAM.

By default, the HDL Coder software optimizes the area of your design by mapping
persistent array variables to RAM. If persistent array variables are not mapped to RAM,
they map to registers. RAM mapping can therefore reduce the area of your design in the
target hardware.

To learn how persistent array variables map to RAM, see “Map Persistent Arrays and
dsp.Delay to RAM” on page 8-3.

Complex Data Type Support

Complex Data Type Support

In this section...

“Declaring Complex Signals” on page 2-11
“Conversion Between Complex and Real Signals” on page 2-12
“Support for Vectors of Complex Numbers” on page 2-13

Declaring Complex Signals

The following MATLAB code declares several local complex variables. x and y are
declared by complex constant assignment; z is created using the using the complex()
function.

function [x,y,z] = fcn

o°

nmuno

reate 8 bit complex constants
uint8(1 + 2i);

uint8(3 + 4j);
uint8(complex(5, 6));

N < X

The following code example shows VHDL® code generated from the previous MATLAB
code.

ENTITY complex_decl IS
PORT (

clk : IN std logic;
clk enable : IN std logic;
reset : IN std logic;
Xx_re : OUT std logic_ vector(7 DOWNTO 0);
x_im : OUT std logic_vector(7 DOWNTO 0);
y re : OUT std logic vector(7 DOWNTO 0);
y im : OUT std logic vector(7 DOWNTO 0);
z re : OUT std logic vector(7 DOWNTO 0);
z_im : OUT std logic_vector(7 DOWNTO 0));

END complex_decl;

ARCHITECTURE fsm SFHDL OF complex_decl IS

BEGIN
x_re <= std logic_vector(to unsigned(1l, 8));
x_im <= std logic_vector(to_unsigned(2, 8));
y re <= std logic vector(to unsigned(3, 8));
y im <= std logic_vector(to unsigned(4, 8));
z re <= std logic_vector(to unsigned(5, 8));
z_im <= std logic_vector(to unsigned(6, 8));

END fsm SFHDL;

2-11

2 MATLAB Algorithm Design

2-12

As shown in the example, complex inputs, outputs and local variables declared in
MATLAB code expand into real and imaginary signals. The naming conventions for these
derived signals are:

* Real components have the same name as the original complex signal, suffixed with the
default string ' re' (for example, x re). To specify a different suffix, set the
Complex real part postfix option (or the corresponding ComplexRealPostfix CLI
property).

* Imaginary components have the same name as the original complex signal, suffixed
with the string ' _im' (for example, x_im). To specify a different suffix, set the
Complex imaginary part postfix option (or the corresponding
ComplexImagPostfix CLI property).

A complex variable declared in MATLAB code remains complex during the entire length of
the program.

Conversion Between Complex and Real Signals

The MATLAB code provides access to the fields of a complex signal via the real () and
imag () functions, as shown in the following code.

function [Re_part, Im_part]= fcn(c)
% Output real and imaginary parts of complex input signal

Re_part
Im_part

real(c);
imag(c);

HDL Coder supports these constructs, accessing the corresponding real and imaginary
signal components in generated HDL code. In the following Verilog code example, the
MATLAB complex signal variable c is flattened into the signals ¢_re and c¢_im. Each of
these signals is assigned to the output variables Re part and Im part, respectively.

module Complex To Real Imag (clk, clk enable, reset, c_re, c_im, Re_part, Im part);

input clk;

input clk_enable;
input reset;

input [3:0] c_re;
input [3:0] c_im;
output [3:0] Re_part;
output [3:0] Im_part;

// Output real and imaginary parts of complex input signal
assign Re_part = c_re;
assign Im part = c_im;

Complex Data Type Support

Support for Vectors of Complex Numbers

You can generate HDL code for vectors of complex numbers. Like scalar complex
numbers, vectors of complex numbers are flattened down to vectors of real and imaginary
parts in generated HDL code.

For example in the following script t is a complex vector variable of base type ufix4 and
size [1,2].

function y = fcn(ul, u2)

t
y

[ul u2];
t+1;

In the generated HDL code the variable t is broken down into real and imaginary parts
with the same two-element array. .

VARIABLE t re : vector_of_unsigned4(0 TO 3);
VARIABLE t_im : vector_of_unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of type ufix4,
as shown in the following code.

TYPE vector of unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);

Complex vector-based operations (+,-,* etc.,) are similarly broken down to vectors of real
and imaginary parts. Operations are performed independently on the elements of such
vectors, following MATLAB semantics for vectors of complex numbers.

In both VHDL and Verilog code generated from MATLAB code, complex vector ports are
always flattened. If complex vector variables appear on inputs and outputs, real and
imaginary vector components are further flattened to scalars.

In the following code, ul and u2 are scalar complex numbers and Yy is a vector of complex
numbers.

function y = fcn(ul, u2)

t [ul u2];

t+1;

This generates the following port declarations in a VHDL entity definition.

ENTITY _MATLAB_Function IS
PORT (
clk : IN std logic;
clk enable : IN std logic;
reset : IN std logic;
ul re : IN vector of std logic vector4(6 TO 1);
ul im : IN vector of std logic vector4(6 TO 1);

2-13

2 MATLAB Algorithm Design

u2 re : IN vector of std logic vector4(6 TO 1);

u2_im : IN vector of std logic vector4(6 TO 1);

y re : OUT vector of std logic vector32(06 TO 3);

y im : OUT vector_of std logic vector32(0 TO 3));
END MATLAB Function;

2-14

HDL Code Generation for System Objects

HDL Code Generation for System Objects

In this section...

“Why Use System Objects?” on page 2-15

“Predefined System Objects” on page 2-15

“User-Defined System Objects” on page 2-16

“Limitations of HDL Code Generation for System Objects” on page 2-16
“System object Examples for HDL Code Generation” on page 2-17

HDL Coder supports both predefined and user-defined System objects for code
generation.

Why Use System Objects?

System objects provide a design advantage because:

* You can save time during design and testing by using existing System object
components.

* You can design and qualify custom System objects for reuse in multiple designs.

* You can define your algorithm in a System object once, and reuse multiple instances of
it in a single MATLAB design.

This idiom cannot be used with MATLAB functions that have state. For example, if the
algorithm has state and requires the use of persistent variables, that function cannot
be instantiated multiple times in a design. Instead, you would need to copy and
rename the function for each instance.

* HDL code that you generate from System objects is modular and more readable.

Predefined System Objects

Predefined System objects that are available with MATLAB, DSP System Toolbox™, and
Communications Toolbox™ are supported for HDL code generation. For a list, see
“Predefined System Objects Supported for HDL Code Generation” on page 2-18.

2-15

2 MATLAB Algorithm Design

User-Defined System Objects

You can create user-defined System objects for HDL code generation. For an example, see
“Generate Code for User-Defined System Objects” on page 2-22.

Limitations of HDL Code Generation for System Objects

The following limitations apply to HDL code generation for all System objects:

* Your design can call the step method only once per System object.

* step must not be inside a nested conditional statement, such as a nested loop, if
statement, or switch statement.

» step must not be inside a conditional statement that contains a matrix indexing
operation.

* A System object must be declared persistent if it has state.
A System object has state when it has a tunable private or public property, or a
property with the DiscreteState attribute.

* You can use the dsp.Delay System object only in feed-forward delay modeling.

* UseMatrixTypesInHDL attribute must be set to ‘off’, if you have a System object in
your MATLAB code.

* Enumerations are not supported.
* Global variables are not supported.

Supported Methods

For predefined System Objects, step is the only method supported for HDL code
generation.

For user-defined System Objects, either the step method, or the output and update
methods, are supported for HDL code generation.

Additional Restrictions for Predefined System Objects

Predefined System objects are not supported for HDL code generation from within a
MATLAB System block.

2-16

HDL Code Generation for System Objects

Additional Restrictions for User-Defined System Objects

In addition to the limitations for all System objects, the following restrictions apply to
user-defined System objects for HDL code generation:

In the setupImpl and resetImpl methods, if you assign values to properties or
variables, the values must be constants.

If your design uses the output and update methods, it can call each method only
once per System object.

Initial and reset values for properties must be compile-time constant.
User-defined System objects must not be public properties.
A step method with multiple outputs cannot be called within a conditional statement.

System object Examples for HDL Code Generation

To learn how to use System objects for HDL code generation, view the MATLAB designs
in the following examples:

“HDL Code Generation from System Objects” on page 5-15

“Model State with Persistent Variables and System Objects” on page 2-38
“Generate Code for User-Defined System Objects” on page 2-22
“Integrate Custom HDL Code Into MATLAB Design” on page 5-28

2-17

2 MATLAB Algorithm Design

Predefined System Objects Supported for HDL Code
Generation

In this section...

“Predefined System Objects in MATLAB Code” on page 2-18
“Predefined System Objects in the MATLAB System Block” on page 2-20

Predefined System Objects in MATLAB Code

HDL Coder supports the following MATLAB System objects for HDL code generation:

* hdl.RAM
* hdl.BlackBox

HDL Coder supports the following Communications Toolbox System objects for HDL code
generation:

* comm.BPSKModulator, comm.BPSKDemodulator

* comm.PSKModulator, comm.PSKDemodulator

* comm.QPSKModulator, comm.QPSKDemodulator

* comm.ConvolutionalInterleaver, comm.ConvolutionalDeinterleaver
*+ comm.ViterbiDecoder

» comm.HDLCRCDetector, comm.HDLCRCGenerator

* comm.HDLRSDecoder, comm.HDLRSEncoder

HDL Coder supports the following DSP System Toolbox System objects for HDL code
generation:

* dsp.Delay

e dsp.Maximum

e dsp.Minimum

* dsp.BiquadFilter

* dsp.DCBlocker

* dsp.HDLComplexToMagnitudeAngle

2-18

Predefined System Objects Supported for HDL Code Generation

dsp.
dsp.

HDLFIRRateConverter
HDLFFT, dsp.HDLIFFT

dsp.HDLCha
dsp.HDLNCO
dsp.FIRFil

nnelizer

ter

dsp.HDLFIRFilter

HDL Coder supports the following Vision HDL Toolbox™ System objects for HDL code
generation:

visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl.
visionhdl
visionhdl.
visionhdl.
visionhdl.
visionhdl
visionhdl.
visionhdl.

BilateralFilter
BirdsEyeView
ChromaResampler
ColorSpaceConverter

DemosaicInterpolator

EdgeDetector
GammaCorrector

.LookupTable

Histogram
ImageStatistics
ROISelector
LineBuffer
PixelStreamAligner
ImageFilter
MedianFilter

.Closing

Dilation
Erosion
Opening

.GrayscaleClosing

GrayscaleDilation
GrayscaleErosion

2-19

2 MATLAB Algorithm Design

* visionhdl.GrayscaleOpening

Predefined System Objects in the MATLAB System Block

A subset of these predefined System objects are supported for code generation when you
use them in a MATLAB System block. To learn more, see MATLAB System.

2-20

Load constants from a MAT-File

Load constants from a MAT-File

You can load compile-time constants from a MAT-file with the coder. load function in
your MATLAB design.

For example, you can create a MAT-file, sinvals.mat, that contains fixed-point values of
sin by entering the following commands in MATLAB:

sinvals = sin(fi(-pi:0.1:pi, 1, 16,15));
save sinvals.mat sinvals;

You can then generate HDL code from the following MATLAB code, which loads the
constants from sinvals.mat into a persistent variable, pConstStruct, and assigns the
values to a variable that is not persistent, sv.

persistent pConstStruct;
if isempty(pConstStruct)
pConstStruct = coder.load('sinvals.mat');
end
sv = pConstStruct.sinvals;

2-21

2 MATLAB Algorithm Design

Generate Code for User-Defined System Objects

2-22

In this section...

“How To Create A User-Defined System object” on page 2-22
“User-Defined System object Example” on page 2-22

How To Create A User-Defined System object

To create a user-defined System object and generate code:

Create a class that subclasses from matlab.System.
Define one of the following sets of methods:

o setupImpl and stepImpl
o setupImpl, outputImpl, and updateImpl

To use the outputImpl and updateImpl methods, your System object must also
inherit from the matlab.system.mixin.Nondirect class.

Optionally, if your System object has private state properties, define the resetImpl
method to initialize them to zero.

Write a top-level design function that creates an instance of your System object and
calls the step method, or the output and update methods.

Note The resetImpl method runs automatically during System object initialization.
For HDL code generation, you cannot call the public reset method.

Write a test bench function that exercises the top-level design function.
Generate HDL code.

User-Defined System object Example

This example shows how to generate HDL code for a user-defined System object that
implements the setupImpl and stepImpl methods.

In a writable folder, create a System object, CounterSys0bj, which subclasses from
matlab.System. Save the code as CounterSysObj.m.

Generate Code for User-Defined System Objects

classdef CounterSysObj < matlab.System

properties (Nontunable)
Threshold = int32(1)
end
properties (Access=private)
State
Count
end
methods
function obj = CounterSysObj(varargin)
setProperties(obj,nargin,varargin{:});
end
end

methods (Access=protected)
function setupImpl(obj, ~)
% Initialize states
obj.Count = int32(0);
obj.State = int32(0);
end
function y = stepImpl(obj, u)
if obj.Threshold > u(1)
obj.Count(:) = obj.Count + int32(1); % Increment count
end
y = obj.State;
obj.State = obj.Count;

elay output
ut new value in state

o O

[)
“©
[)

“©

end
end
end

The stepImpl method implements the System object functionality. The setupImpl
method defines the initial values for the persistent variables in the System object.
Write a function that uses this System object and save it as myDesign.m. This
function is your DUT.

function y = myDesign(u)

persistent obj
if isempty(obj)

obj = CounterSysObj('Threshold',5);
end

y = step(obj, u);

2-23

2 MATLAB Algorithm Design

end
3 Write a test bench that calls the DUT function and save it as myDesign_ tb.m.

clear myDesign
for 1i=1:10

y = myDesign(int32(ii));
end

4 Generate HDL code for the DUT function as you would for any other MATLAB code,
but skip fixed-point conversion.

See Also

More About
. “HDL Code Generation for System Objects” on page 2-15

2-24

Map Matrices to ROM

Map Matrices to ROM

To map a matrix constant to ROM:

* Read one matrix element at a time.

* The matrix size must be greater than or equal to the RAM Mapping Threshold
value.

To learn how to set the RAM mapping threshold in Simulink, see the RAM mapping
threshold (bits) section in “RAM Mapping” on page 14-5. To learn how to set the
RAM mapping threshold in MATLAB, see “How To Enable RAM Mapping” on page 8-
3.

* Read accesses to the matrix must not be within a feedback loop.

If your MATLAB code meets these requirements, HDL Coder inserts a no-reset register at
the output of the matrix in the generated code. Many synthesis tools infer a ROM from
this code pattern.

2-25

2 MATLAB Algorithm Design

Fixed-Point Bitwise Functions

2-26

The following table summarizes bitwise functions in MATLAB and Fixed-Point Designer
that are supported for HDL code generation. The following conventions are used in the
table:

* a,b: Denote fixed-point integer operands.

* 1idx: Denotes an index to a bit within an operand. Indexes can be scalar or vector,
depending on the function.

MATLAB code uses 1-based indexing conventions. In generated HDL code, such
indexes are converted to zero-based indexing conventions.

* lidx, ridx: denote indexes to the left and right boundaries delimiting bit fields.
Indexes can be scalar or vector, depending on the function.

* val: Denotes a Boolean value.

Note Indexes, operands, and values passed as arguments bitwise functions can be scalar
or vector, depending on the function. For information on the individual functions, see
“Bitwise Operations” (Fixed-Point Designer).

MATLAB Syntax Description See Also
bitand(a, b) Bitwise AND bitand
bitandreduce(a, Bitwise AND of a field of consecutive bits bitandreduce
lidx, ridx) within a. The field is delimited by 1idx,

ridx.

Output data type: ufix1

For VHDL, generates the bitwise AND
operator operating on a set of individual
slices

For Verilog, generates the reduce operator:

&a[lidx: ridx]

bitcmp(a) Bitwise complement bitcmp

Fixed-Point Bitwise Functions

MATLAB Syntax

Description

See Also

bitconcat(a, b)
bitconcat([a vector
1)

bitconcat(a,
b,c,d,...)

Concatenate fixed-point operands.
Operands can be of different signs.

Output data type: ufixN, where N is the sum
of the word lengths of a and b.

For VHDL, generates the concatenation
operator: (a & b)

For Verilog, generates the concatenation
operator: {a , b}

bitconcat

bitget(a,idx)

Access a bit at position idx.

For VHDL, generates the slice operator:
a(idx)

For Verilog, generates the slice operator:
a[idx]

bitget

bitor(a, b)

Bitwise OR

bitor

bitorreduce(a,
lidx, ridx)

Bitwise OR of a field of consecutive bits
within a. The field is delimited by 1idx and
ridx.

Output data type: ufix1

For VHDL, generates the bitwise OR
operator operating on a set of individual
slices.

For Verilog, generates the reduce operator:

|a[lidx: ridx]

bitorreduce

bitset(a, idx, val)

Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitreplicate(a, n)

Concatenate bits of fi object a n times

bitreplicate

2-27

2 MATLAB Algorithm Design

2-28

MATLAB Syntax

Description

See Also

bitrol(a, idx)

Rotate left.

idx must be a positive integer. The value of
idx can be greater than the word length of
a. 1dx is normalized to mod (idx, wlen).
wlen is the word length of a.

For VHDL, generates the rol operator.

For Verilog, generates the following
expression (where wl is the word length of
a:

a << idx || a >> wl - idx

bitrol

bitror(a, idx)

Rotate right.

idx must be a positive integer. The value of
idx can be greater than the word length of
a. 1dx is normalized to mod (idx, wlen) .
wlen is the word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following
expression (where wl is the word length of
a:

a >> idx || a << wl - idx

bitror

bitset(a, idx, val)

Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

Fixed-Point Bitwise Functions

MATLAB Syntax

Description

See Also

bitshift(a, idx)

Note: For efficient HDL code generation,
use bitsll, bitsrl, or bitsra instead of
bitshift.

Shift left or right, based on the positive or
negative integer value of'idx.

idx must be an integer.

For positive values of idx, shift left idx bits.

For negative values of idx, shift right idx
bits.

If idx is a variable, generated code contains
logic for both left shift and right shift.

Result values saturate if the overflowMode
of a is set to saturate.

bitshift

bitsliceget(a, Access consecutive set of bits from lidx to |bitsliceget
lidx, ridx) ridx.

Output data type: ufixN, where N = lidx-

ridix+1.
bitsll(a, idx) Shift left logical. bitsll

idx must be a scalar within the range
0 <= idx < wl
wl is the word length of a.

Overflow and rounding modes of input
operand a are ignored.

Generates s11 operator in VHDL.

Generates << operator in Verilog.

2-29

2 MATLAB Algorithm Design

MATLAB Syntax Description See Also

bitsra(a, idx) Shift right arithmetic. bitsra

idx must be a scalar within the range
0 <= idx < wl
wl is the word length of a,

Overflow and rounding modes of input
operand a are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsrl(a, idx) Shift right logical. bitsrl
idx must be a scalar within the range
0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input
operand a are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitxor(a, b) Bitwise XOR bitxor

2-30

See Also

MATLAB Syntax Description See Also
bitxorreduce(a, Bitwise XOR reduction. bitxorreduce
lidx, ridx)

Bitwise XOR of a field of consecutive bits

within a. The field is delimited by 1idx and

ridx.

Output data type: ufix1

For VHDL, generates a set of individual

slices.

For Verilog, generates the reduce operator:

~a[lidx: ridx]
getlsb(a) Return value of LSB. getlsb
getmsb(a) Return value of MSB. getmsb
See Also

Related Examples
. “Bit Shifting and Bit Rotation” on page 2-42
. “Bit Slicing and Bit Concatenation” on page 2-45

More About

. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Run-Time Library Functions” on page 2-32

2-31

2 MATLAB Algorithm Design

Fixed-Point Run-Time Library Functions

HDL code generation support for fixed-point run-time library functions from the Fixed-
Point Designer is summarized in the following table. See “Fixed-Point Function
Limitations” on page 2-36 for general limitations of fixed-point run-time library functions
for code generation.

Function Remarks and Limitations

abs Double and complex data types not supported.

add —

all Double data type not supported.

any Double data type not supported.

bitand —

bitandreduce —

bitcmp —

bitconcat =

bitget —

bitor —

bitorreduce —

bitreplicate —

bitrol —

bitror —

bitset —

bitshift —

bitsliceget —

bitsll —

bitsra —

bitsrl _

bitxor —

bitxorreduce —

ceil —

2-32

Fixed-Point Run-Time Library Functions

Function Remarks and Limitations

complex —

conj —

convergent —

ctranspose —

divide * For HDL Code generation, the divisor must be a constant and a
power of two.

* Non-fi inputs must be constant; that is, their values must be
known at compile time so that they can be cast to fi objects.

* Complex and imaginary divisors are not supported.

* Code generation in MATLAB does not support the syntax
T.divide(a,b).

end —

eps * Supported for scalar fixed-point signals only.

* Supported for scalar, vector, and matrix, fi single and fi
double signals.

eq —

fi —

fimath —

fix —

floor —

ge —

getlsb —

getmsb —

gt —

horzcat —

imag —

int8, intl16, int32 —

iscolumn —

isempty —

2-33

2 MATLAB Algorithm Design

Function

Remarks and Limitations

isequal

isfi

isfimath

isfimathlocal

isfinite

isinf

isnan

isnumeric

isnumerictype

isreal

isrow

isscalar

issigned

isvector

le

length

logical

lowerbound

1sb

1t

max

min

minus

mpower

Both inputs must be scalar, and the exponent input, k, must be a
constant integer.

mtimes

ndims

ne

2-34

Fixed-Point Run-Time Library Functions

Function Remarks and Limitations

nearest —

numberofelements —

numerictype —

ones Dimensions must be real, nonnegative integers.

plus Inputs cannot be data type logical.

power Both inputs must be scalar, and the exponent input, k, must be a
constant integer.

range —

real —

realmax —

realmin —

reinterpretcast —

repmat —

rescale =

reshape —

round —

sfi —

sign —

size —

sqrt —

sub —

subsasgn Supported data types for HDL code generation are listed in
“Supported MATLAB Data Types, Operators, and Control Flow
Statements” on page 2-2.

subsref Supported data types for HDL code generation are listed in
“Supported MATLAB Data Types, Operators, and Control Flow
Statements” on page 2-2.

sum —

times Inputs cannot be data type logical.

2-35

2 MATLAB Algorithm Design

Function Remarks and Limitations

transpose —

ufi —

uint8, uintl6, uint32 —

uminus —

uplus Inputs cannot be data type logical.

upperbound —

vertcat —

Fixed-Point Function Limitations

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated HDL code:

+ fipref and quantizer objects are not supported.

» Slope and bias scaling are not supported.

* Dot notation is only supported for getting the values of fimath and numerictype
properties. Dot notation is not supported for fi objects, and it is not supported for
setting properties.

* Word lengths greater than 128 bits are not supported.

* You cannot change the fimath or numerictype of a given variable after that variable
has been created.

* The boolean and ScaledDouble values of the DataTypeMode and DataType
properties are not supported.

» For all SumMode property settings other than FullPrecision, the CastBeforeSum
property must be set to true.

* The numel function returns the number of elements of fi objects in the generated
code.

* General limitations of C/C++ code generated from MATLAB apply. See “MATLAB
Language Features That Code Generation Does Not Support” (Fixed-Point Designer)
for more information.

2-36

See Also

See Also

Related Examples
. “Bit Shifting and Bit Rotation” on page 2-42
. “Bit Slicing and Bit Concatenation” on page 2-45

More About
. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Bitwise Functions” on page 2-26

2-37

2 MATLAB Algorithm Design

Model State with Persistent Variables and System
Objects

2-38

This example shows how to use persistent variables and System objects to model state
and delays in a MATLAB® design for HDL code generation.

Introduction
Using System objects to model delay results in concise generated code.

In MATLAB, multiple calls to a function having persistent variables do not result in
multiple delays. Instead, the state in the function gets updated multiple times.

In order to reuse code implemented in a function with states,
you need to duplicate functions multiple times to create multiple
instances of the algorithm with delay.

o® o o°

Examine the MATLAB Code
Let us take a quick look at the implementation of the Sobel algorithm.

Examine the design to see how the delays and line buffers are modeled using:

» Persistent variables: mlhdlc sobel
* System objects: mlhdlc_sysobj sobel
Notice that the 'filterdelay' function is duplicated with different function names in

'mlhdlc sobel' code to instantiate multiple versions of the algorithm in MATLAB for HDL
code generation.

The delay line implementation is more complicated when done using MATLAB persistent

variables.

Now examine the simplified implementation of the same algorithm using System objects
in 'mlhdlc sysobj sobel'.

When used within the constraints of HDL code generation, the dsp.Delay objects always
map to registers. For persistent variables to be inferred as registers, you have to be
careful to read the variable before writing to it to map it to a register.

matlab:edit('mlhdlc_sobel')
matlab:edit('mlhdlc_sysobj_sobel')

Model State with Persistent Variables and System Objects

MATLAB Design

demo_files = {...
‘mlhdlc_sysobj sobel',
'mlhdlc_sysobj sobel tb',
‘mlhdlc_sobel’,
‘mlhdlc_sobel tb'

b
Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc _demo dir
mlhdlc _temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabl
[tempdir 'mlhdlc_delay modeling'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc temp dir);

for ii=1:numel(demo_files)
copyfile(fullfile(mlhdlc _demo dir, [demo files{ii},'.m*']), mlhdlc_temp dir);
end

Known Limitations

For predefined System Objects, HDL Coder™ only supports the 'step' method and does
not support 'output' and ‘update' methods.

With support for only the step method, delays cannot be used in modeling feedback paths.
For example, the following piece of MATLAB code cannot be supported using the
dsp.Delay System object.

s#codegen

function y = accumulate(u)
persistent p;

if isempty(p)

2-39

2 MATLAB Algorithm Design

2-40

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc sobel

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB Function and
'mlhdlc sobel th.m'as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the
option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the hyperlinks in the Code Generation Log
window.

Now, create a new project for the system object design:
coder -hdlcoder -new mlhdlc sysobj sobel

Add the file 'mlhdlc_sysobj sobel.m' to the project as the MATLAB Function and
'mlhdlc_sysobj sobel th.m'as the MATLAB Test Bench.

Repeat the code generation steps and examine the generated fixed-point MATLAB and
HDL code.

Additional Notes:

You can model integer delay using dsp.Delay object by setting the 'Length' property to be
greater than 1. These delay objects will be mapped to shift registers in the generated
code.

If the optimization option 'Map persistent array variables to RAMs' is enabled, delay
System objects will get mapped to block RAMs under the following conditions:

 'InitialConditions' property of the dsp.Delay is set to zero.
* Delay input data type is not floating-point.

Model State with Persistent Variables and System Objects

* RAMSize (DelayLength * InputWordLength) is greater than or equal to the 'RAM
Mapping Threshold'.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc _delay modeling'];

2-41

2 MATLAB Algorithm Design

Bit Shifting and Bit Rotation

HDL Coder supports shift and rotate functions that mimic HDL-specific operators without
saturation and rounding logic.

The following code implements a barrel shifter/rotator that performs a selected operation
(based on the mode argument) on a fixed-point input operand.

function y = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator

% fixed width shift operation
fixed width = uint8(3);

switch mode
case 1
% shift left logical
y = bitsll(u, fixed width);
case 2

o°

shift right logical
bitsrl(u, fixed width);

y
case 3

o°

shift right arithmetic
bitsra(u, fixed width);

y
case 4

% rotate left

y bitrol(u, fixed width);
case 5

% rotate right
bitror(u, fixed width);
ise
o nothing
u;

S <

o°
[N [|

otherw

<

end

In VHDL code generated for this function, the shift and rotate functions map directly to
shift and rotate instructions in VHDL.

CASE mode IS
WHEN "00000001" =>
-- shift left logical
--'<52>:1:8"
cr := signed(u) sll 3;
y <= std logic vector(cr);

2-42

Bit Shifting and Bit Rotation

WHEN "00000010" =>

-- shift right logical

--'<S2>:1:11"

b cr := signed(u) srl 3;

y <= std logic vector(b cr);
WHEN "00000011" =>

-- shift right arithmetic

--'<S§2>:1:14"

c _cr := SHIFT RIGHT(signed(u) , 3);

y <= std logic vector(c cr);
WHEN "00000100" =>

-- rotate left

--'<S§2>:1:17"

d cr := signed(u) rol 3;

y <= std logic vector(d cr);
WHEN "00000101" =>

-- rotate right

--'<52>:1:20"

e cr := signed(u) ror 3;

y <= std logic vector(e cr);
WHEN OTHERS =>

-- do nothing

--'<582>:1:23"

y <= u;

END CASE;

The corresponding Verilog code is similar, except that Verilog does not have native
operators for rotate instructions.

case (mode)

1:
begin
// shift left logical
//'<52>:1:8'
Cr = u <<< 3;
y = cr;
end
2
begin
// shift right logical
//'<S2>:1:11"
b cr =u> 3;
y = b cr;
end
3:

2-43

2 MATLAB Algorithm Design

begin
// shift right arithmetic
//'<S2>:1:14"
c Ccr =u>>3;
y = Cc Cr;
end
4 -
begin
// rotate left
//'<S2>:1:17"
d cr = {u[12:0], u[l1l5:13]1};
y =d cr;
end
5 :
begin
// rotate right
//'<52>:1:20"'
e cr = {u[2:0], u[l5:3]1};
y = e cr;
end
default :
begin
// do nothing
//'<S2>:1:23"
y = u;
end
endcase

See Also

Related Examples
. “Bit Slicing and Bit Concatenation” on page 2-45

More About
. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Bitwise Functions” on page 2-26

. “Fixed-Point Run-Time Library Functions” on page 2-32

2-44

Bit Slicing and Bit Concatenation

Bit Slicing and Bit Concatenation

This section describes how to use the functions bitsliceget and bitconcat to access
and manipulate bit slices (fields) in a fixed-point or integer word. As an example, consider
the operation of swapping the upper and lower 4-bit nibbles of an 8-bit byte. The
following example accomplishes this task without resorting to traditional mask-and-shift
techniques.

function y = fcn(u)

% NIBBLE SWAP

y = bitconcat(..
bitsliceget(u, 4, 1)
bitsliceget(u, 8, 5));

The bitsliceget and bitconcat functions map directly to slice and concat operators
in both VHDL and Verilog.

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
PORT (
clk : IN std logic;
clk enable : IN std logic;
reset : IN std logic;
u : IN std logic vector(7 DOWNTO 0);
y : OUT std logic vector(7 DOWNTO 0));
END nibble swap 7b;

ARCHITECTURE fsm SFHDL OF fcn IS

BEGIN

-- NIBBLE SWAP

y <= u(3 DOWNTO @) & u(7 DOWNTO 4),;
END fsm SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk enable, reset, u, y);
input clk;
input clk _enable;
input reset;

2-45

2 MATLAB Algorithm Design

2-46

input [7:0] u;
output [7:0] vy;

// NIBBLE SWAP
assign y = {u[3:01, ul[7:41};

endmodule

See Also

Related Examples
. “Bit Shifting and Bit Rotation” on page 2-42

More About
. “Bitwise Operations” (Fixed-Point Designer)
. “Fixed-Point Bitwise Functions” on page 2-26

. “Fixed-Point Run-Time Library Functions” on page 2-32

Guidelines for Efficient HDL Code

Guidelines for Efficient HDL Code

When you generate HDL code from your MATLAB design, you are converting an
algorithm into an architecture that must meet hardware area and speed requirements.

For better HDL code and faster code generation, design your MATLAB code according to
the following best practices:

Serialize your input and output data. Parallel data processing structures require more
hardware resources and a higher pin count.

Use add and subtract algorithms instead of algorithms that use functions like sin,
divide, and modulo. Add and subtract operations use fewer hardware resources.

Avoid large arrays and matrices. Large arrays and matrices require more registers and
RAM for storage.

Convert your code from floating-point to fixed-point. Floating-point data types are
inefficient for hardware realization. HDL Coder provides an automated workflow for
floating-point to fixed-point conversion.

Unroll loops. Unroll loops to increase speed at the cost of higher area; unroll fewer
loops and enable the loop streaming optimization to conserve area at the cost of lower
throughput.

2-47

2 MATLAB Algorithm Design

MATLAB Design Requirements for HDL Code Generation

2-48

Your MATLAB design has the following requirements:

* MATLAB code within the design must be supported for HDL code generation.
* Inputs and outputs must not be matrices or structures.

If you are generating code from the command line, verify your code readiness for code
generation with the following command:

coder.screener('design_ function name')

If you use the HDL Workflow Advisor to generate code, this check runs automatically.

For a MATLAB language support reference, including supported functions from the Fixed-
Point Designer, see “MATLAB Algorithm Design”.

What Is a MATLAB Test Bench?

What Is a MATLAB Test Bench?

A test bench is a MATLAB script or function that you write to test the algorithm in your
MATLAB design function. The test bench varies the input data to the design to simulate
real world conditions. It can also can check that the output data meets design
specifications.

HDL Coder uses the data it gathers from running your test bench with your design to
infer fixed-point data types for floating-point to fixed-point conversion. The coder also
uses the data to generate HDL test data for verifying your generated code. For more
information on how to write your test bench for the best results, see “MATLAB Test Bench
Requirements and Best Practices” on page 2-50.

2-49

2 MATLAB Algorithm Design

MATLAB Test Bench Requirements and Best Practices

2-50

MATLAB Test Bench Requirements

You can use any MATLAB data type and function in your test bench.

A MATLAB test bench has the following requirements:

For floating-point to fixed-point conversion, the test bench must be a script or a
function with no inputs.

The inputs and outputs in your MATLAB design interface must use the same data
types, sizes, and complexity in each call site in your test bench.

If you enable the Accelerate test bench for faster simulation option in the Float-to-
Fixed Workflow, the MATLAB constructs in your test bench loop must be compilable.

MATLAB Test Bench Best Practices

Use the following MATLAB test bench best practices:

Design your test bench to cover the full numeric range of data that the design must
handle. HDL Coder uses the data that it accumulates from running the test bench to
infer fixed-point data types during floating-point to fixed-point conversion.

If you call the design function multiple times from your test bench, the coder uses the
accumulated data from each instance to infer fixed-point types. Both the design and
the test bench can call local functions within the file or other functions on the MATLAB
path. The call to the design function can be at any level of your test bench hierarchy.

Before trying to generate code, run your test bench in MATLAB . If simulation is slow,
accelerate your test bench. To learn how to accelerate your simulation, see “Accelerate
MATLAB Algorithms” (MATLAB Coder).

If you have a loop that calls your design function, use only compilable MATLAB
constructs within the loop and enable the Accelerate test bench for faster
simulation option.

Before each test bench simulation run, use the clear variables command to reset
your persistent variables.

To see an example of a test bench, enter this command:

MATLAB Test Bench Requirements and Best Practices

showdemo mlhdlc tutorial float2fixed files

2-51

MATLAB Best Practices and Design
Patterns for HDL Code Generation

* “Model a Counter for HDL Code Generation” on page 3-2
* “Model a State Machine for HDL Code Generation” on page 3-5
* “Generate Hardware Instances For Local Functions” on page 3-10
* “Implement RAM Using MATLAB Code” on page 3-13
“For-Loop Best Practices for HDL Code Generation” on page 3-16

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Model a Counter for HDL Code Generation

In this section...

“MATLAB Counter” on page 3-2
“MATLAB Code for the Counter” on page 3-3

“Best Practices in this Example” on page 3-3

MATLAB Counter

This design pattern shows a MATLAB example of a counter, which is suitable for HDL
code generation.

This model demonstrates the following best practices for writing MATLAB code to
generate HDL code:

 Initialize persistent variables.
* Read persistent variables before they are modified.

This Simulink model illustrates the counter modeled in this example.

3-2

Enable >

1 | L =0

h J
™

2-1 - count
count_wval
D | —D\‘
»l >0
e o
1 -
count_add

Y

15 >

count_threshold

Model a Counter for HDL Code Generation

MATLAB Code for the Counter

The function mlhdlc_counter is a behavioral model of a four bit synchronous up
counter. The input signal, enable_ ctr, triggers the value of the count register,
count_val, to increase by one. The counter continues to increase by one each time the
input is nonzero, until the count reaches a limit of 15. After the counter reaches this limit,
the counter returns to zero. A persistent variable, which is initialized to zero, represents
the current value of the count. Two if statements determine the value of the count based
on the input.

The following section of code defines the mldhlc_counter function.

%#codegen
function count = mlhdlc counter(enable ctr)
%four bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

scounting up
if enable ctr
count val=count val+l;
%limit to four bits
if count val>15
count val=0;
end
end
count=count _val;

end

Best Practices in this Example

This design pattern demonstrates two best practices for writing MATLAB code for HDL
code generation:

3-3

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

+ Initialize persistent variables to a specific value. In this example, an if statement and
the isempty function initialize the persistent variable. If the persistent variable is not
initialized then HDL code cannot be generated.

* Inside a function, read persistent variables before they are modified, in order for the
persistent variables to be inferred as registers.

3-4

Model a State Machine for HDL Code Generation

Model a State Machine for HDL Code Generation

In this section...

“MATLAB State Machines” on page 3-5

“MATLAB Code for the Mealy State Machine” on page 3-5
“MATLAB Code for the Moore State Machine” on page 3-7
“Best Practices” on page 3-9

MATLAB State Machines

The following design pattern shows MATLAB examples of Mealy and Moore state
machines which are suitable for HDL code generation.

The MATLAB code in these models demonstrates best practices for writing MATLAB
models for HDL code generation.

» With a switch block, use the otherwise statement to account for all conditions.
» Use variables to designate states in a state machine.

In a Mealy state machine, the output depends on the state and the input. In a Moore state
machine, the output depends only on the state.

MATLAB Code for the Mealy State Machine

The following MATLAB code defines the mlhdlc fsm mealy function. A persistent
variable represents the current state. A switch block uses the current state and input to
determine the output and new state. In each case in the switch block, an if-else
statement calculates the new state and output.

%s#codegen
function Z = mlhdlc_ fsm mealy(A)
% Mealy State Machine

y = f(x,u)
all actions are condition actions and
outputs are function of state and input

d° o o°

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

% define states

S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

persistent current state;
if isempty(current state)

current state = S1;
end

% switch to new state based on the value state register
switch (current state)

case S1,

% value of output 'Z' depends both on state and inputs

if (A)

Z = true;

current state = S1;
else

Z = false;

current state = S2;
end

case S2,

if (A)

Z = false;

current state = S3;
else

Z = true;

current state = S2;
end

case S3,

if (A)

Z = false;

current state = S4;
else

Z = true;

current state = S1;
end

Model a State Machine for HDL Code Generation

case 5S4,
if (A)
Z = true;
current state = S1;
else
Z = false;
current state = S3;
end
otherwise,
Z = false;

end

MATLAB Code for the Moore State Machine

The following MATLAB code defines the mlhdlc_fsm moore function. A persistent
variable represents the current state, and a switch block uses the current state to
determine the output and new state. In each case in the switch block, an if-else
statement calculates the new state and output. The value of the state is represented by
numerical variables.

%#codegen
function Z = mlhdlc_fsm moore(A)
% Moore State Machine

y = f(x)
all actions are state actions and
outputs are pure functions of state only

o° o o°

o

s define states

S1 = 0;
S2 = 1;
S3 = 2;
S4 = 3;

% using persistent keyword to model state registers in hardware
persistent curr_state;
if isempty(curr_state)

curr_state = S1;

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

end

% switch to new state based on the value state register
switch (curr_state)

case S1,

% value of output 'Z' depends only on state and not on inputs
Z = true;

% decide next state value based on inputs

if (~A)
curr_state = S1;
else
curr_state = S2;
end
case S2,
Z = false;
if (~A)
curr_state = S1;
else
curr_state = S3;
end
case S3,
Z = false;
if (~A)
curr_state = S2;
else
curr_state = S4;
end
case 5S4,
Z = true;
if (~A)
curr_state = S3;
else

curr_state = S1;

Model a State Machine for HDL Code Generation

end

otherwise,
Z = false;
end

Best Practices

This design pattern demonstrates two best practices for writing MATLAB code for HDL
code generation.

* With a switch block, use the otherwise statement to ensure that the model
accounts for all conditions. If the model does not cover all conditions, the generated
HDL code can contain errors.

» To designate the states in a state machine, use variables with numerical values.

3-9

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

Generate Hardware Instances For Local Functions

3-10

In this section...

“MATLAB Local Functions” on page 3-10

“MATLAB Code for mlhdlc two counters.m” on page 3-10

MATLAB Local Functions

The following example shows how to use local functions in MATLAB, so that each
execution of a local function corresponds to a separate hardware module in the generated
HDL code. This example demonstrates best practices for writing local functions in
MATLAB code that is suitable for HDL code generation.

* Ifyour MATLAB code executes a local function multiple times, the generated HDL
code does not necessarily instantiate multiple hardware modules. Rather than
instantiating multiple hardware modules, multiple calls to a function typically update
the state variable.

+ If you want the generated HDL code to contain multiple hardware modules
corresponding to each execution of a local function, specify two different local
functions with the same code but different function names. If you want to avoid code
duplication, consider using System objects to implement the behavior in the function,
and instantiate the System object multiple times.

» If you want to specify a separate HDL file for each local function in the MATLAB code,
in the Workflow Advisor, on the Advanced tab in the HDL Code Generation section,
select Generate instantiable code for functions .

MATLAB Code for mlhdlc_two _counters.m

This function creates two counters and adds the output of these counters. To create two
counters, there are two local functions with identical code, counter and counter2. The
main method calls each of these local functions once. If the function were to call the
counter function twice, separate hardware modules for the counters would not be
generated in the HDL code.

%#codegen
function total count = mlhdlc_two counters(a,b)

Generate Hardware Instances For Local Functions

%This function contains two different local functions with identical

%scounters and calls each counter once.
total countl=counter(a);

total count2=counter2(b);

total count=total countl+total count2;

function count = counter(enable ctr)
%four bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

scounting up
if enable ctr

count val=count val+l;
end

%limit from four bits
if count val>15

count val=0;
end

count=count val;

function count = counter2(enable ctr)
%four bit synchronous up counter

%spersistent variable for the state
persistent count val;
if isempty(count val)
count val = 0;
end

scounting up
if enable ctr
count _val=count val+l;

3-11

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

3-12

end

%limit from four bits

if count val>15
count val=0;

end

count=count val;

Implement RAM Using MATLAB Code

Implement RAM Using MATLAB Code

In this section...

“Implementation of RAM” on page 3-13
“Implement RAM Using a Persistent Array or System object Properties” on page 3-13
“Implement RAM Using hdl. RAM” on page 3-14

Implementation of RAM

You can write MATLAB code that maps to RAM during HDL code generation by using:

* Persistent arrays or private properties in a user-defined System object.
* hdl.RAM System objects.

The following examples model the same line delay in MATLAB. However, one example
uses a persistent array and the other uses an hdl.RAM System object to model the RAM
behavior.

The line delay uses memory in a ring structure. Data is written to one location and read
from another location in such a way that the data written is read after a delay of a specific
number of cycles. The RAM read address is generated by a counter. The write address is
generated by adding a constant value to the read address.

For a comparison of the ways you can write MATLAB code to map to RAM during HDL
code generation, and for an overview of the tradeoffs, see “RAM Mapping Comparison for
MATLAB Code” on page 8-8. For more information, see “Map Persistent Arrays and
dsp.Delay to RAM” on page 8-3.

Implement RAM Using a Persistent Array or System object
Properties

This example shows a line delay that implements the RAM behavior using a persistent
array with the function mlhdlc_hdlram_persistent. Changing a specific value in the

persistent array is equivalent to writing to the RAM. Accessing a specific value in the
array is equivalent to reading from the RAM.

You can implement RAM by using user-defined System object private properties in the
same way.

3-13

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

3-14

%#codegen
function data out = mlhdlc _hdlram persistent(data_in)

persistent hRam;
if isempty(hRam)

hRam = zeros(128,1);
end

% read address counter

persistent rdAddrCtr;

if isempty(rdAddrCtr)
rdAddrCtr = 1;

end

% ring counter length
ringCtrLength = 10;
ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data in;
sramWriteEnable = true;

ramReadAddr = rdAddrCtr;
% execute single step of RAM

hRam(ramWriteAddr)=ramWriteData;
ramRdDout=hRam(ramReadAddr) ;

rdAddrCtr = rdAddrCtr + 1;

data out = ramRdDout;

Implement RAM Using hdl.RAM

This example shows a line delay that implements the RAM behavior using hd1.RAM with
the function, mlhdlc _hdlram sysobj. In this function, the step method of the
hdl.RAM System object reads and writes to specific locations in hRam.

%#codegen
function data out = mlhdlc_hdlram sysobj(data in)
persistent hRam;
if isempty(hRam)
hRam = hdl.RAM('RAMType', 'Dual port');
end

Implement RAM Using MATLAB Code

% read address counter

persistent rdAddrCtr;

if isempty(rdAddrCtr)
rdAddrCtr = 0;

end

[)

% ring counter length
ringCtrLength = 10;
ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data in;
ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

[~, ramRdDout] = step(hRam,ramWriteData, ramWriteAddr,
ramWriteEnable, ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data out = ramRdDout;

hdl.RAM Restrictions for Code Generation

Code generation from hdl.RAM has the same restrictions as code generation from other
System objects. For details, see “Limitations of HDL Code Generation for System Objects”
on page 2-16.

3-15

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

For-Loop Best Practices for HDL Code Generation

3-16

In this section...

“MATLAB Loops” on page 3-16

“Monotonically Increasing Loop Counters” on page 3-16
“Persistent Variables in Loops” on page 3-17

“Persistent Arrays in Loops” on page 3-18

MATLAB Loops

Some best practices for using loops in MATLAB code for HDL code generation are:

* Use monotonically increasing loop counters, with increments of 1, to minimize the
amount of hardware generated in the HDL code.

* Ifyou want to use the loop streaming optimization:

* When assigning new values to persistent variables inside a loop, do not use other
persistent variables on the right side of the assignment. Instead, use an
intermediate variable.

+ If aloop modifies any elements in a persistent array, the loop should modify all of
the elements in the persistent array.

Monotonically Increasing Loop Counters

By using monotonically increasing loop counters with increments of 1, you can reduce the
amount of hardware in the generated HDL code. The following loop is an example of a
monotonically increasing loop counter with increments of 1.

a=1;

for i=1:10
a=a+l;

end

If a loop counter increases by an increment other than 1, the generated HDL code can
require additional adders. Due to this additional hardware, do not use the following type
of loop.

a=1;
for i=1:2:10

For-Loop Best Practices for HDL Code Generation

a=a+l;
end

If a loop counter decreases, the generated HDL code can require additional adders. Due
to this additional hardware, do not use the following type of loop.

a=1;

for i=10:-1:1
a=a+l;

end

Persistent Variables in Loops

If a loop contains multiple persistent variables, when you assign values to persistent
variables, use intermediate variables that are not persistent on the right side of the
assignment. This practice makes dependencies clear to the compiler and assists internal
optimizations during the HDL code generation process. If you want to use the loop
streaming optimization to reduce the amount of generated hardware, this practice is
recommended.

In the following example, varl and var2 are persistent variables. varl is used on the
right side of the assignment. Because a persistent variable is on the right side of an
assignment, do not use this type of loop:

for i=1:10
varl =1 + i;
var2 = varl * 2;
end

Instead of using varl on the right side of the assignment, use an intermediate variable
that is not persistent. This example demonstrates this with the intermediate variable
var _intermediate.

for i=1:10
var _intermediate = 1 + i;
varl var _intermediate;
var2 var_intermediate * 2;

end

3-17

3 MATLAB Best Practices and Design Patterns for HDL Code Generation

3-18

Persistent Arrays in Loops

If a loop modifies elements in a persistent array, make sure that the loop modifies all of
the elements in the persistent array. If all elements of the persistent array are not
modified within the loop, HDL Coder cannot perform the loop streaming optimization.

In the following example, a is a persistent array. The first element is modified outside of
the loop. Do not use this type of loop.

for i=2:10
a(i)=1+i;

end

a(l)=24;

Rather than modifying the first element outside the loop, modify all of the elements inside
the loop.

for i=1:10
if i==1
a(i)=24;
else
a(i)=1+i;
end
end

Fixed-Point Conversion

» “Floating-Point to Fixed-Point Conversion” on page 4-2

* “Fixed-Point Type Conversion and Refinement” on page 4-15

* “Working with Generated Fixed-Point Files” on page 4-25

* “Specify Type Proposal Options” on page 4-32

* “Log Data for Histogram” on page 4-36

* “View and Modify Variable Information” on page 4-38

* “Automated Fixed-Point Conversion” on page 4-41

* “Custom Plot Functions” on page 4-58

* “Visualize Differences Between Floating-Point and Fixed-Point Results” on page 4-60
* “Inspecting Data Using the Simulation Data Inspector” on page 4-66

* “Enable Plotting Using the Simulation Data Inspector” on page 4-69

* “Replacing Functions Using Lookup Table Approximations” on page 4-71
* “Replace a Custom Function with a Lookup Table” on page 4-72

* “Replace the exp Function with a Lookup Table” on page 4-80

* “Data Type Issues in Generated Code” on page 4-88

4 Fixed-Point Conversion

Floating-Point to Fixed-Point Conversion

4-2

This example shows how to start with a floating-point design in MATLAB, iteratively
converge on an efficient fixed-point design in MATLAB, and verify the numerical accuracy
of the generated fixed-point design.

Signal processing applications for reconfigurable platforms require algorithms that are
typically specified using floating-point operations. However, for power, cost, and
performance reasons, they are usually implemented with fixed-point operations either in
software for DSP cores or as special-purpose hardware in FPGAs. Fixed-point conversion
can be very challenging and time-consuming, typically demanding 25 to 50 percent of the
total design and implementation time. Automated tools can simplify and accelerate the
conversion process.

For software implementations, the aim is to define an optimized fixed-point specification
which minimizes the code size and the execution time for a given computation accuracy
constraint. This optimization is achieved through the modification of the binary point
location (for scaling) and the selection of the data word length according to the different
data types supported by the target processor.

For hardware implementations, the complete architecture can be optimized. An efficient
implementation will minimize both the area used and the power consumption. Thus, the
conversion process goal typically is focused around minimizing the operator word length.

The floating-point to fixed-point workflow is currently integrated in the HDL Workflow
Advisor that you have been introduced to in the tutorial Getting Started with MATLAB to
HDL Workflow.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™ includes the
following steps:
Verify that the floating-point design is compatible with code generation.
Compute fixed-point types based on the simulation of the testbench.

Generate readable and traceable fixed-point MATLAB code by applying proposed
types.
Verify the generated fixed-point design.

5 Compare the numerical accuracy of the generated fixed-point code with the original
floating point code.

Floating-Point to Fixed-Point Conversion

MATLAB Design

The MATLAB code used in this example is a simple second-order direct-form 2 transposed
filter. This example also contains a MATLAB testbench that exercises the filter.

design name = 'mlhdlc df2t filter';
testbench name = 'mlhdlc df2t filter tb';

Examine the MATLAB design.

type(design_name);

s#codegen
function y = mlhdlc df2t filter(x)

% Copyright 2011-2015 The MathWorks, Inc.

persistent z;

if isempty(z)
% Filter states as a column vector
z = zeros(2,1);

end

Filter coefficients as constants
[0.29290771484375 0.585784912109375
[1.0 0.0

b(1)*x + z(1);
(b(2)*x + z(2)) - a(2) *vy;
b(3)*x - a(3) * vy;

—~
=
f—

i mnu

end

0.292907714843750];
0.171600341796875];

For the floating-point to fixed-point workflow, it is desirable to have a complete testbench.
The quality of the proposed fixed-point data types depends on how well the testbench
covers the dynamic range of the design with the desired accuracy.

For more details on the requirements for the floating-point design and the testbench,
refer to the 'Floating-Point Design Structure' structure section of the Working with

Generated Fixed-Point Files tutorial.

type(testbench_name);

4-3

4 Fixed-Point Conversion

4-4

% Copyright 2011-2015 The MathWorks, Inc.

Fs = 256; % Sampling frequency

Ts = 1/Fs; % Sample time

t =0:Ts:1-Ts; % Time vector from 0 to 1 second

fl = Fs/2; % Target frequency of chirp set to Nyquist
in = sin(pi*fl1*t.”2); % Linear chirp from 0 to Fs/2 Hz in 1 second

out = zeros(size(in)); OQutput the same size as the input
for ii=1:length(in)

out(ii) = mlhdlc df2t filter(in(ii));
end

% Plot

figure('Name', [mfilename, ' plot'l);
subplot(2,1,1);

plot(in);

xlabel('Time")

ylabel('Amplitude')

title('Input Signal (with Noise)')

subplot(2,1,2);

plot(out);

xlabel('Time")
ylabel('Amplitude')

title('Output Signal (filtered)')

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary

folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc flt2fix prj'l;

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc temp dir);

copyfile(fullfile(mlhdlc _demo dir, [design name,'.m*']), mlhdlc_temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

Floating-Point to Fixed-Point Conversion

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc df2t filter tb

Input Signal {with Noise)

1
|
05 -
]
=
= 1
E 0 IH 4
o |
E q
b
05T 7
_1 i J I i i
0 50 100 150 200 250 300
Time
. Output Signal (filtered)
05 I y
@
=
=
5 0 1
E Il
by
05 J :
_1 i i i i i
0 50 100 150 200 280 300

Time

Create a New HDL Coder Project
To create a new project, enter the following command:
coder -hdlcoder -new flt2fix project

Next, add the file 'mlhdlc filter.m' to the project as the MATLAB Function and
‘'mlhdlc filter th.m' as the MATLAB Test Bench.

4 Fixed-Point Conversion

4-6

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Fixed-Point Code Generation Workflow

The floating-point to fixed-point conversion workflow allows you to:

Verify that the floating-point design is code generation compliant

Propose fixed-point types based on simulation data and word length settings

Allow the user to manually adjust the proposed fixed-point types

Validate the proposed fixed-point types

Verify that the generated fixed-point MATLAB code has the desired numeric accuracy

Step 1: Launch Workflow Advisor

1
2

Click on the Workflow Advisor button to launch the HDL Workflow Advisor.
Choose 'Convert to fixed-point at build time' for the option 'Fixed-point conversion'.

Floating-Point to Fixed-Point Conversion

4\ HDL Code Generation

=I-_| HDL Workflow Advisor

; ~[_| Define Input Types

Fixed-Point Conversion

HDL Code Generation

HDL Verification

1 Verify with HDL Test Bench

Verify with Cosimulation

-1 Verify with FPGA-in-the-Loop
Synthesis and Analysis

Create Project
Run Logic Synthesis
Run Place and Route

[E= Eoh =)

HDL Advisor helps you generate synthesizable HDL code from your fixed-point MATLAB design. It also helps you convert your
floating-point MATLAB design to fixed-point based on your selections.

Fixed-point conversion: iConvert to fixed-point at build time! ~ |

Build folder Project folder -

Step 2: Define Input Types

In this step you can define input types manually or by specifying and running the

testbench.

1 Click 'Run' to execute this step.

After simulation notice that the input variable 'x' is defined as scalar double 'double(1x1)'

Step 3: Run Simulation

1 Click on the 'Fixed-Point Conversion' step.

4 Fixed-Point Conversion

The design is compiled with the input types defined in the previous step and after the
compilation is successful the variable table shows inferred types for all the functions in

the design.

In this step, the original design is instrumented so that the minimum and maximum
values for all variables in the design are collected during simulation.

A\ Workflow Advisor - flt2fix_project.prj

E-_] HDL Workflow Advisor

; o Define Input Types

__| Fixed-Point Conversion

@ Select Code Generation Target
7] HDL Code Generation

£+ HDL Verification

{01 Verify with HDL Test Bench
H {1 Verify with Cosimulation
[Verify with FPGA-in-the-Loop

===
o e _
m) . O Propose fraction lengths @ @
Function: | /= mihdic_df2t filter v [Proposs wordlengths
Analyze : : Defautt word length: 14 Advanced Validate Test Help
> - Types Numerics

DATA COLLECTION NAVIGATICN TYPE PROPOSAL VERIFICATICN HELP
To compute proposed fixed-point types for variables, use Run Simulation, Compute Derived Ranges, or both, x

1
2
3
1
5
[
7
&
a

10
11
12
13
14
15
16
17

2i#codegen
function ¥ = mlhdlc df2c filter(x)

% Copyright 2011-2015 The MathWorks, Inc.

persistent z;

if isempty(z)
% Filter states as a column vector
z = zeros(2,1);

end

% Filter coefficients as constants

b = [0.29290771484375 0.585784912109375 0.292907714843750];
a

= [1.0 0.0

¥ = b(l)*x + z(1):
z (1) (B(2)*= + =z(2)) - a(2) * vz

“atiables | Function Replacerments | Output

Variable Type Sim Min Sim Max Whole...
=
% double Mo
=
¥ double Mo
=
z 2% 1double Mo
(=]
b 1x3 double Mo
a 1x3 double Mo

0.171600341796875] ;

Proposed Type

Log

Error (%)

m

1 (Click on the 'Analyze' button.

Notice that the 'Sim Min' and 'Sim Max' table is now populated with simulation ranges.
Fixed-point types are proposed based on the default word length settings.

Floating-Point to Fixed-Point Conversion

A\ Workflow Advisor - flt2fix_project.prj

E-_] HDL Workflow Advisor

o Define Input Types

__| Fixed-Point Conversion

@ Select Code Generation Target
+--[2] HDL Code Generation

&8 HDL Verification

{01 Verify with HDL Test Bench
{71 Verify with Cosimulation
= Verify with FPGA-in-the-Loop

===
m) . 9 Propose fraction lengths {g} \‘/. L @
Function: = milhdlc_df2t_filter M Propose word lengths
Analyze . : Default word length: |14 Advanced Valdate Test Help
- - Types MNumerice =
DATA GOLLECTION NAVIGATION TYPE PROPOSAL VERIFICATION HELP
1 F#codegen -
2 function y = mlhdlc df2t filter (x)
32
4 % Copyright 2011-2015 The MathWorks, Inc.
5
[persistent z;
70| if isempty(z)
] % Filter states as a column Vector L
9 z = zeros(2,1): r
10 end
11
12 % Filter coefficients as constants
13 b = [0.29230771484375 0.585784912109375 0.292907714843750]:
14 a=[1.0 0.0 0.171600341796875] ;
15
16 v = Db(l)*x + z(1):
17 z(l) = (b(2)*x + 2(2)) - a(2) * y:
150 | z(2) = b(3)*x - a(3) * v; il
“atiables | Function Replacerments | Output
Variable Type Sim Min Sim Max Whole... Proposed Type Log Error (%)
=]
b3 double -1 1 Mo nurnerictype(l, 14, 12) v
=
¥ double -0.99 1 Mo nurerictype(l, 14, 13) v
=]
I 2x ldouble -0.8 0.g Mo numerictype(l, 14, 13)
=
b 1x3 double 0.29 0.59 Mo nurerictype(l, 14, 14)
a 1x 3 double 1} 1 Mo numerictype(l, 14, 13)

At this stage, based on computed simulation ranges for all variables, you can compute:

» Fraction lengths for a given fixed word length setting, or

* Word lengths for a given fixed fraction length setting.

The type table contains the following information for each variable existing in the
floating-point MATLAB design, organized by function:

* Sim Min: The minimum value assigned to the variable during simulation.

* Sim Max: The maximum value assigned to the variable during simulation.

* Whole Number: Whether all values assigned during simulation are integers.

4 Fixed-Point Conversion

The type proposal step uses the above information and combines it with the user-specified
word length settings to propose a fixed-point type for each variable.

You can also enable the 'Log histogram data' option in the 'Analyze' button's menu to
enable logging of histogram data.

4\ Workflow Advisor - fit2fix_project.prj EI@
= J}g’;ﬁjg:lf:;::; m) . 2 Propose fraction lengths. @ Q/ L @
_____ = [— pnayze | FUnCHon: mindic_d2t fiker ~ [#f © Propose word lengths : "
! Default word length: [14 | Advanced Validate Test elp
----- o Select Code Generation Target - - Types Numerics w
""" 1 HDL Code Generation DATA COLLECTION MAVIGATION TYPE PROPOSAL VERIFICATION HELP
=+ HDL Verification 1 t#codegen -
-2 Verify with HDL Test Bench 2|5l function v = mlhdlc df2t_filter (x) I
{0 Verify with Cosimulation 3
-l Verify with FPGA-in-the-Loop| 4l | & Copyright 2011-2015 The MathWorks, Inc.
5
[persistent z;
7 if isempty(z) £
8 % Filter states as a column Vector
] z = zeros(2,1):
10 end
11
12 % Filter coefficients as constants | 4
| 13 = [0.29290771484375 0.585784512109375 0.292%07714843750]:
‘(14 = [1.0 0.0 0.171600341726875] ;
= 15
16 v = b(l)*x + =z (1): -

“ariahles | Function Replacements | Output

Variable Type Sim Min Sim Max Whole... Proposed Type Log Error (%)
=]
T e e e A ||
=])Y
Y double -0.99 — v
=] 5 L
z 751 double -0.8 _ s
=]
b 1w 3 double 0.29)
. 133 double 0 Sim values covered 97% Signed
Supported range -2 : 1.9998
90

The histogram view concisely gives information about dynamic range of the simulation
data for a variable. The x-axis correspond to bit weights and y-axis represents number of
occurrences. The proposed numeric type information is overlaid on top of this graph and
is editable. Moving the bounding white box left or right changes the position of binary
point. Moving the right or left edges correspondingly change fraction length or
wordlength. All the changes made to the proposed type are saved in the project.

4-10

Floating-Point to Fixed-Point Convers

ion

Step 4: Validate types

In this step, the fixed-point types from the previous step are used to generate a fixed-
point MATLAB design from the original floating-point implementation.

1

Click on the 'Validate Types' button.

4\ Workflow Advisor - fit2fix_project.prj

E-_] HDL Workflow Advisor

; 0 Define Input Types

o Fixed-Point Conversion

@ Select Code Generation Target
| HDL Code Generation

- HDL Verification

{8 Verify with HDL Test Bench
T Verify with Cosimulation

o lfe)

4 15

m) . ©Q Propose fraction lengths {g} Qp D [3)
Function: = mlhdlc_df2t filter ﬁ ™ Propose word lengths
Analyze . . Defautt word length: [14 Advanced Validate Test Help
- - Types Numerics =
DATA COLLECTION NAVIGATION TYPE PROPOSAL VERIFICATION HELP
1 3#codegen -
2 function y = mlhdlc df2t filter (x)
el
4 E Copvright 2011-2015 The MathWorks, Inc.
5
a persistent z;
7 if isempty(z) £
g % Filter states as a column vector
9 z = zeros(2,1);
10 end
11
12 % Filter coefficients as constants L4
13 b = [0.29220771484373 0.585784912109375 0.292907714843750]:
14 a= [1.0 0.0 0.171600341796875] -
16 ¥ = bl)*x + z(1); -
‘ariables | Function Replacements | Qutput
knalyzing the test bench(es) 'mlhdlc_df2t_filter_tb' -
#4## Begin Floating Point Simulation (Instrumented)
Floating Point Simulation Completed in 1.0194 sec(s)
Elapsed Time: 1.5504 =sec(s)
Type Validation Cutput (11/1/16 5:34 PM) A

#E

Code generation successful:

Generating Tyvpe Proposal Report for 'mlhdlc df2t filter' mlhdlc df2t filter report.htm
Generating Fixed Point MATLAB Code mlhdlc_df2t filter fixpt using Proposed Types
Generating Fixed Point MATLAE Design Wrapper mlhdlc df2t filter wrapper fixpt
Generating Mex file for ' mlhdlc df2t filter wrapper fixpt '

View report

I 2

The generated code and other conversion artifacts are available via hyperlinks in the
output window. The fixed-point types are explicitly shown in the generated MATLAB code.

4-11

4 Fixed-Point Conversion

Ei Editor - C\U jilee\AppData\Local\Tempimlhdic_fit2 fncodegen\milhdlc_df2t_filte wmihdlc_df2t_filter_fixpt.m [Read Only]

[mihdic_df2t filter fixptam o0 | + |
1 I%% TD
2 k] 3 ¥
3 k] Generated by MATLABR 9.1 and Fixed-Point Designer 5.3 3
4 % =
H R R R R R R R R R L L R R L R R L R R R R LR R R Y
& t#codegen
7 function y = mlhdlc df2c filter fixprt (x) |
& -
9 k] Copyright 2011-201% The MathWorks, Inc.
10
11 = fm = get_fimath():
12
13 - persistent z;
14 — if isempty(z) M
15 % Filter states as a column vVector
16 — z = fi(zere=(2,1), 1, 14, 13, £fm):
1= end
18
19 % Filter coefficients as constants
20 — b = fi([0.29230771484375 0.585784912109375 0.232907714843750], 0, 14, 14, fm):
21 — a=fi([1.0 0.0 0.171600341796875], 0, 14, 13, fm):
22
23 = v = fi(bi(l)*x + =z(1), 1, 14, 13, fm):
24 — z(1) = fi_signed((b(2)*x + z(2))) - a(2) * vy:
25 = z(2) = £fi_signed(bi(3)*x) - a(3) * ¥; i
ac

Step 5: Test Numerics
1 Click on the 'Test Numerics' button.
In this step, the generated fixed-point code is executed using MATLAB Coder.

If you enable the 'Log all inputs and outputs for comparison plots' option on the 'Test
Numerics' pane, an additional plot is generated for each scalar output that shows the
floating point and fixed point results, as well as the difference between the two. For non-
scalar outputs, only the error information is shown.

4-12

Floating-Point to Fixed-Point Conversion

B Figure 4 =SBl =5
File Edit View Inset Tools Desktop Window Help u
NEHL b RIOVDEL- S| DB 8D
y-float
-1/ T T T
0 4
-1]]]]]
0 50 100 150 200 250 300
y-fixed
1/ T T T
0 4
-1]]]]]
0 50 100 150 200 250 300
%« 10° error
1 1 1 1 1 1
U | | | | |
0 50 100 150 200 250 300

Step 6: Iterate on the Results

If the numerical results do not meet your desired accuracy after fixed-point simulation,
you can return to the 'Propose Fixed-Point Types' step in the Workflow Advisor. Adjust the
word length settings or individually modify types as desired, and repeat the rest of the
steps in the workflow until you achieve your desired results.

4-13

4 Fixed-Point Conversion

You can refer to the Fixed-Point Type Conversion and Refinement example for more
details on how to iterate and refine the numerics of the algorithm in the generated fixed-
point code.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc_flt2fix prj'l];

4-14

Fixed-Point Type Conversion and Refinement

Fixed-Point Type Conversion and Refinement

This example shows how to achieve your desired numerical accuracy when converting
fixed-point MATLAB® code to floating-point code using the HDL Workflow Advisor.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™ includes the
following steps:

Verify the floating-point design is compatible for code generation.

Compute fixed-point types based on the simulation of the testbench.
Generate readable and traceable fixed-point MATLAB® code.

Verify the generated fixed-point design.

D W N R

This tutorial uses Kalman filter suitable for HDL code generation to illustrate some key
aspects of fixed-point conversion workflow, specifically steps 2 and 3 in the above list.

MATLAB Design

The MATLAB code used in this example implements a simple Kalman filter. This example
also contains a MATLAB testbench that exercises the filter.

Kalman filter implementation suitable for HDL code generation

design name = 'mlhdlc kalman hdl"';
testbench name = 'mlhdlc kalman hdl tb';

ATLAB Design: <matlab:edit('mlhdlc_kalman hdl') mlhdlc_kalman_ hd1l>

M
MATLAB testbench: <matlab:edit('mlhdlc_kalman hdl tb') mlhdlc kalman hdl tb>

o° o° o° o°

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabl
[tempdir 'mlhdlc flt2fix'];

[)

% create a temporary folder and copy the MATLAB files
cd(tempdir);

4-15

4 Fixed-Point Conversion

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);
cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc_kalman_hdl tb

Running -------- > mlhdlc kalman hdl tb

Current plot held
Current plot released

4-16

Fixed-Point Type Conversion and Refinement

vertical position

Trajectory of object [blue] its Kalman estimate[red]

0.8r

0.4

0.2

-1 08 06 04 D2 0 0.2 0.4 0.6 0.8 1
horizontal position
Create a New HDL Coder Project
To create a new project, enter the following command:
coder -hdlcoder -new flt2fix project

Next, add the file 'mlhdlc_kalman hdl.m' to the project as the MATLAB Function and
'mlhdlc kalman hdl th.m'as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating HDL Coder projects.

Fixed-Point Code Generation Workflow

Perform the following tasks before moving on to the fixed-point type proposal step:

4-17

4 Fixed-Point Conversion

4-18

Click the 'Workflow Advisor' button to launch the HDL Workflow Advisor.

Choose 'Convert to fixed-point at build time' for the 'Fixed-point conversion' option.
Click 'Run' button to define input types for the design from the testbench.

Select the 'Fixed-Point Conversion' workflow step.

ga A W N R

Click 'Analyze' to execute the instrumented floating-point simulation.

Refer to Floating-Point to Fixed-Point Conversion for a more complete tutorial on these
steps.

Determine the Initial Fixed Point Types

After instrumented floating-point simulation completes, you will see 'Fixed-Point Types
are proposed' based on the simulation results.

At this stage of the conversion proposes fixed-point types for each variable in the design
based on the recorded min/max values of the floating point variables and user input.

At this point, for all variables, you can (re)compute and propose:

* Fraction lengths for a given fixed word length setting, or
* Word lengths for a given fixed fraction length setting.

Choose the Word Length Setting

When you are starting with a floating-point design and going through the floating-point to
fixed-point conversion for the first time, it is a good practice to start by specifying a
'Default Word Length' setting based on the largest dynamic range of all the variables in
the design.

In this example, we start with a default word length of 22 and run the 'Propose Fixed-
Point Types' step.

Fixed-Point Type Conversion and Refinement

4\ Workflow Advisor - fh2fix_project.prj EI@
=-{_| HDL Workflow Advisor -) -, -~
= d) >
Q Define Input Types m 9 Erupuse fracgn': Ianhgths @ W D \2
™ YFixed-Point C : Function:| /* mihdic_kalman_hdl v [ropose word lengths
LA el A Analyze Defautt word length: [14 Advanced | Validate Test Help
0 Select Code Generation Target - - Types Numerics =
~[_] HDL Code Generation DATA GOLLECTION NAVIGATION TYPE PROPOSAL VERIFIGATION HELP
HDL Verification 1] function [v1l, 2, dv_out_g] = mlhdlc kalman hdl(z) -
<1 Verify with HDL Test Bench &
Verify with Cosimulation 30| & copyrighc 2011-2015 The MathWorks, Inc.
Verify with FPGA-in-the-Loop 4
5 nitialize state transition matrix
&
7
e
g
10
11
¢ 1z
13
14 % Measurement matrix
15 H=[100000010000]
“ariables | Function Replacernents | Output | Errors
Variable Type Sim Min Sim Max Whole... Proposed Type Log Error (%)
z 2x1double 0.98 101 Ha numetictype(l, 14, 12 v L
yl double -1.14 1oL Mo nurnerictypeld, 14, 12) v
w2 double -0.9% 0.9g Mo nurnerictype(l, 14, 13) v
dv_out_g double 0 1 Yes numetictype(ll, 1, 0) v
state double 1 5 Yes nurmericepe(l, 3, 0)

Explore the Proposed Fixed-Point Type Table

The type table contains the following information for each variable, organized by function,
existing in the floating-point MATLAB design:

* Sim Min: The minimum value assigned to the variable during simulation.
* Sim Max: The maximum value assigned to the variable during simulation.
* Whole Number: Whether all values assigned during simulation are integer.

The type proposal step uses the above information and combines it with the user-specified
word length settings to propose a fixed-point type for each variable.

You can also use 'Compute Derived Range Analysis' to compute derived ranges and that is
covered in detail in this tutorial Computing Derived Ranges in fixed-point conversion

4-19

4 Fixed-Point Conversion

Interpret the Proposed Numeric Types for Variables

Based on the simulation range (min & max) values and the default word length setting, a
numeric type is proposed for each variable.

The following table shows numeric type proposals for a 'Default word length' of 22 bits.

Wariables | Function Replacerments | Output | Errors

Variable Type Sim Min Sim Max Whole... Proposed Type Log Error (%)
z 2x1double -0.98 101 Mo nurnerictype(l, 14, 12) v
¥l double -1.14 101 Mo nurnerictype(l, 14, 123 v
¥ double -0.98 0.8 Mo nurnerictype(l, 14, 133 v
dw_out_g double] 1 es nurmerictype(l, 1, 0 "4
state double 1 3 Yes nurnerictypedd, 3, 1)
w_est 6x1double -1.14 101 Mo nurnerictype(l, 14, 12}
p_est 6x 6 double] 472,78 MNa hurnerictypedl, 14, 5)

Y 2x1double -1.14 101 MNa hurnerictype(l, 14, 12)
%_prd fix1daouble -1.35 117 Mo hurnerictype(l, 14, 123
p_prd fix 6 double] 896,74 Mo hurnerictypeil, 14, 4)
z_prd 2x1double -1.35 117 Mo nurnerictype(l, 14, 12)
3 2% 2 double] 1896.74 Mo nurnerictype(l, 14, 3)
B 2 x 6 double] 896.74 Mo nurnerictype(l, 14, 4
klrn_gain fix 2 double] 0.47 Mo nurnerictype(l, 14, 15)
dw_out double] 1 es nurmerictype(l, 1, 0
backslash_dw_out double] 1 es nurnerictypedd, 1, 03
dt double 1 1 es hurnerictypedd, 1, 1)
A 6x 6 double] 1 es hurnerictypedd, 1,)
H 2% 6 double] 1 es hurnerictypedd, 1, 03
Q fix 6 double] 1 es hurnerictypeid, 1, 03

R 2% 2 double] 1000 Yes nurnerictype(l, 10, 03

Examine the types proposed in the above table for variables instrumented in the top-level
design.

4-20

Fixed-Point Type Conversion and Refinement

Floating-Point Range for variable 'B':

¢ Simulation Info: SimMin: 0, SimMax: 896.74.., Whole Number: No

» Type Proposed: numerictype(0,22,12) (Signedness: Unsigned, WordLength: 22,
FractionLength: 12)

The floating-point range:

* Has the same number of bits as the 'Default word length'.
* Uses the minimum number of bits to completely represent the range.

* Uses the rest of the bits to represent the precision.

Integer Range for variable 'A':

e Simulation Info: SimMin: 0, SimMax: 1, Whole Number: Yes

* Type Proposed: numerictype(0,1,0) (Signedness: Unsigned, WordLength: 1,
FractionLength: 0)

The integer range:

* Has the minimum number of bits to represent the whole integer range.

* Has no fractional bits.

All the information in the table is editable, persists across iterations, and is saved with
your code generation project.

Generate Fixed-Point Code and Verify the Generated Code

Based on the numeric types proposed for a default word length of 22, continue with fixed-

point code generation and verification steps and observe the plots.

1 Click on 'Validate Types' to apply computed fixed-point types.

2 Next choose the option 'Log inputs and outputs for comparison plots' and then click
on the 'Test Numerics' to rerun the testbench on the fixed-point code.

The plot on the left is generated from testbench during the simulation of floating-point
code, the one on the right is generated from the simulation of the generated fixed-point
code. Notice, the plots do not match.

4-21

4 Fixed-Point Conversion

14 Figure 1: mihdlc_kalman_hdl_tb_plot =3[2 |3 rigure 2 mihdic_kalman_hdl_tb,_plot [E=ER)
File Edit View Inset Tools Desktop Window Help w||| File Edit View Inset Tools Desktop Window Help ¥
NEgde | AU DEL- 2|08 | D DEEL | k| ARTDRA-|S|0B|mD
Trajectory of object [blue] its Kalman estimate[red] Trajectory of object [blue] its Kalman estimate[red]
1k 1t

o8

0.6

0.4

0.2

vertical position
[=]

&
o
vertical position
(=1
T

S
N

04

o
=

-0.6

s
o

=08

s
&

2
T

-1 08 06 04 -02] 02 04 06 08 1 -1 08 06 -04 02 0 02 04 06 08 1
horizontal paosition horizontal position

Having chosen comparison plots option you will see additional plots that compare the
floating and fixed point simulation results for each output variable.

Examine the error graph for each output variable. It is very high for this particular
design.

4-22

Fixed-Point Type Conversion and Refinement

<
4| Figure 4 =@ = Jf 4 Figure 5 = | B)
File Edit View Inset Tools Desktop Window Help el Eile Edit View [Inset Tools Desktop Window Help k]

D He |ARRODLEA- S| 08| =D DEde | RO DEL- |2 0EH | O

o — | |\]
Y N\ / /- /\ NS
/
2 \ 4 . / . . .
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
arrar error
0.2 T T T T T T 2 T T T T
A
ot A\ A PR] Dl_ —
'L (WY,
1
02 2 . . L . L .
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

mihdlc_kalman_hdl > float : y1 mihdlc_kalman_hdl > float : y2
T T T T T T T T

T 1 T

. . . P L \ 1 \ .
] 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
mihdic_kalman_hdl > fixed : y1 mihdlc_kalman_hdl > fixed : y2

T T T T T 1 T T T T T

T T ’l\—

Iterate on the Results

One way to reduce the error is to increase 'Default word length' and repeat the fixed-
point conversion.

In this example design, when a word length of 22 bits is chosen there is a lot of truncation
error when representing the precision. More bits are required to the right of the binary
point to reduce the truncation errors.

Let us now increase the default word length to 28 bits and repeat the type proposal and
validation steps.

1 Select a 'Default word length' of 28.

Changing default word length automatically triggers the type proposal step and new
fixed-point types are proposed based on the new word length setting. Also notice that
type validation needs to be rerun and numerics need to be verified again.

1 Click on 'Validate Types'.
2 Click on 'Test Numerics' to rerun the testbench on the fixed-point code.

Once these steps are complete, re-examine the comparison plots and notice that the error
is now roughly three orders of magnitude smaller.

4-23

4 Fixed-Point Conversion

4 Figure 6 o | Bl e | & Figure 7 = B R
File Edit View Inset Tools Desktop Window Help .l File Edit View Insert Tools Desktop Window Help o
Ddde | k|AR0DEA- S| 0E =D Ddde | k| ARTDELA- |G 0E aDd
mihdlc_kalman_hdl > float : y1 mihdic_kalman_hdl > float : y2
2 T T T T T T 1 T T T T T
’ \\/_////\ g 0 E
2 A
] 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
mihdlc_kalman_hdl > fixed : y1 mihdlc_kalman_hdl > fixed : y2
2 T T T T T 1 I{ T T T T T T
T _.l\
0 — B 0 — B
\/-7__7 \ / ;// \\/{_‘\/’_'\
2 A
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
(103y error C(m error
5 - T T T T 5 vl T T T T T
I,
0p) e — g 0 —"P/"-'— — —— s ——— B
= 5
] 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo dir
mlhdlc_temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matl:
[tempdir 'mlhdlc_flt2fix'];

4-24

Working with Generated Fixed-Point Files

Working with Generated Fixed-Point Files

This example shows how to work with the files generated during floating-point to fixed-
point conversion.

Introduction

This tutorial uses a simple filter implemented in floating-point and an associated
testbench to illustrate the file structure of the generated fixed-point code.

design name = 'mlhdlc filter';
testbench name = 'mlhdlc filter tb';

MATLAB® Code

1 MATLAB Design: mlhdlc filter
2 MATLAB testbench: mlhdlc filter tb

Create a New Folder and Copy Relevant Files

Executing the following lines of code copies the necessary example files into a temporary
folder.

mlhdlc_demo dir
mlhdlc_temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabl
[tempdir 'mlhdlc flt2fix'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc_demo dir, [design name,'.m*']), mlhdlc_temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc filter tb

4-25

matlab:edit('mlhdlc_filter')
matlab:edit('mlhdlc_filter_tb')

4 Fixed-Point Conversion

4-26

. Stimulus
Input
D&k Moize| |
0
0.5 F
_1 i i i i i
0 50 100 150 200 250 300

Combined Input

350 400 450

Filtered Output

500

600

Working with Generated Fixed-Point Files

£
=

[
=

-60

Powerfrequency (dB/Hz)

~J
=

40

-60

-B0

Power/frequency (dB/Hz)

Input Power Spectral Density

./ R _‘__,-'-\.__.f'"'--_.o---\h -I_f_.—-__/ T e e
i Ay |
I"II'.
{ l"‘._
.-""ll
0 5 10 15 20
Frequency (kHz)
Output Power Spectral Density
L / \R. |
\'x\
- "M/_'\./_'_f N — — |
'f-ﬁ_ }r(_\\-._.
0 5 10 15 20

Frequency (kHz)

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix project

Next, add the file 'mlhdlc filter' to the project as the MATLAB Function and
‘mlhdlc filter tb' as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Fixed-Point Code Generation Workflow

Perform the following tasks in preparation for the fixed-point code generation step:

4-27

4 Fixed-Point Conversion

4-28

1
2
3
4

Click the Advisor button to launch the Workflow Advisor.

Choose 'Yes' for the option 'Design needs conversion to fixed-point'.

Right-click the 'Propose Fixed-Point Types' step.

Choose 'Run to Selected Task' to execute the instrumented floating-point simulation.

Refer to the Floating-Point to Fixed-Point Conversion tutorial for a more complete
description of these steps.

Floating-Point Design Structure

The original floating-point design and testbench have the following relationship.

TestBench
(filter_th.m)

Floating-point stimulus Floating-pointresponse

For floating-point to fixed-point conversion, the following requirements apply to the
original design and the testbench:

L]

L]

The testbench 'mlhdlc filter th.m' (1) must be a script or a function with no inputs.
The design 'mlhdlc filterm' (2) must be a function.

There must be at least one call to the design from the testbench. All call sites
contribute when determining the proposed fixed-point types.

Working with Generated Fixed-Point Files

* Both the design and testbench can call other sub-functions within the file or other
functions on the MATLAB path. Functions that exist within matlab/toolbox are not
converted to fixed-point.

In the current example, the MATLAB testbench 'mlhdlc filter tb' has a single call to the
design function 'mlhdlc filter'. The testbench calls the design with floating-point inputs
and accumulates the floating-point results for plotting.

Validate Types

During the type validation step, fixed-point code is generated for this design and compiled
to verify that there are no errors when applying the types. The output files will have the
following structure.

TestBench
(Filter_tb_fixpt.m)

Design Wrapper
(filter_wrapper_fixpt.m)

3)

IN I ouT
Floating-paint stimulus / Floating-pointresponse
Fixed-paoint Fixed-point
stimulus respaonse

The following steps are performed during fixed-point type validation process:

1 The design file 'mlhdlc filter.m' is converted to fixed-point to generates fixed-point
MATLAB code, 'mlhdlc filter FixPt.m' (3).

2 All user-written functions called in the floating-point design are converted to fixed-
point and included in the generated design file.

4-29

4 Fixed-Point Conversion

3 A new design wrapper file is created, called 'mlhdlc filter wrapper FixPt.m'(2). This
file converts the floating-point data values supplied by the testbench to the fixed-
point types determined for the design inputs during the conversion step. These fixed-
point values are fed into the converted fixed-point design, 'mlhdlc filter FixPt.m'.

'mlhdlc filter FixPt.m' will be used for HDL code generation.

5 All the generated fixed-point files are stored in the output directory 'codegen/filter/

fixpt'.

4\ Workflow Advisor - flt2fix_project.prj

E-_] HDL Workflow Advisor
; Q Define Input Types
Q Fixed-Point Conversion
; @ Select Code Generation Target
+[~] HDL Code Generation
48 HDL Verification
I Verify with HDL Test Bench
Verify with Cosimulation
] Verify with FPGA-in-the-Loop

= o =R
w) . Q Propose fraction lengths @ Q? D @
Function: = mlhdlc_filter - M " Propose word lengtns X
Analyze L Default word length: |14 Advanced Validate Test Help
= - Types MNumerics ~
DATA COLLECTION NAVIGATION TYPE PROPOSAL VERIFICATION HELP
10 o
11 function out=mlhdlc filter(in)
12 persistent td c;
13 % Clear tap delay line at beginning
14 if isempty(c) =
15 c = equiripple3l coeffs(): % initialize coefficients only once
16 td = zeros(1,length(c)):
17
18
19
20 % shift tap delay line
21 td= [in td(l:end-1)]:
22
23
24
25 function coefficients = equiripple3l coeffs()
26 S
Wariables | Function Replacements | Cutput
Begin Floating Point Simmlation (Instrumented) -
$## Floating Point Simulation Completed in 1.8038 sec(s)
$## Elapsed Time: 2.5327 sec(s)
Type Validation Output (11/1/16 5:58 PM) A

FEF
Code generation successful: View report

Generating Mex file for ' mlhdlc filter wrapper fixpt '

Generating Type Proposal Report for 'mlhdlec_filter' mlhdlc filter report.html
Generating Fixed Point MATLAB Code mlhdlc filter fixpt using Proposed Types
Generating Fixed Point MATLAB Design Wrapper mlhdlc filter wrapper fixpt

m

Click the links to the generated code in the Workflow Advisor log window to examine the
generated fixed-point design, wrapper, and test bench.

4-30

Working with Generated Fixed-Point Files

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc flt2fix'];

4-31

4 Fixed-Point Conversion

Specify Type Proposal Options

Basic Type Proposal Values Description
Settings
Fixed-point type proposal Propose fraction lengths for |Use the specified word
mode specified word length length for data type
proposals and propose the
minimum fraction lengths to
avoid overflows.
Propose word lengths for Use the specified fraction
specified fraction length length for data type
(default) proposals and propose the
minimum word lengths to
avoid overflows.
Default word length 14 (default) Default word length to use

when Fixed-point type
proposal mode is set to
Propose fraction
lengths for specified
word lengths

Default fraction length

4 (default)

Default fraction length to
use when Fixed-point type
proposal mode is set to
Propose word lengths
for specified
fraction lengths

Advanced Type Proposal Settings

Values

Description

When proposing types

ignore simulation
ranges

Propose data types based on
derived ranges.

Note Manually-entered static ranges
always take precedence over simulation
ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

use all collected data

(default)

Propose data types based on both
simulation and derived ranges.

4-32

Specify Type Proposal Options

Advanced Type Proposal Settings

Values

Description

Propose target container types

Yes

Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 ...). For
example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default)

Propose data types with the
minimum word length needed to
represent the value.

Optimize whole numbers

No

Do not use integer scaling for
variables that were whole numbers
during simulation.

Yes (default)

Use integer scaling for variables
that were whole numbers during
simulation.

Signedness

Automatic (default)

Proposes signed and unsigned data
types depending on the range
information for each variable.

Signed

Propose signed data types.

Unsigned

Propose unsigned data types.

Safety margin for sim min/max (%)

0 (default)

Specify safety factor for simulation
minimum and maximum values.

The simulation minimum and
maximum values are adjusted by
the percentage designated by this
parameter, allowing you to specify a
range different from that obtained
from the simulation run. For
example, a value of 55 specifies
that you want a range at least 55
percent larger. A value of - 15
specifies that a range up to 15
percent smaller is acceptable.

4-33

4 Fixed-Point Conversion

Advanced Type Proposal Settings Values Description
Search paths "' (default) Add paths to the list of paths to
search for MATLAB files. Separate
list items with a semicolon.
fimath Settings Values Description
Rounding method Ceiling Specify the fimath
Convergent properties for the generated
fixed-point data types.
Floor (default)
The default fixed-point math
WG properties use the Floor
Round rounding and Wrap overflow.
7ero These settings generate the
; most efficient code but
Overflow action Saturate

4-34

might cause problems with

Wrap (default)

overflow.

Product mode

FullPrecision (default)

After code generation, if

KeepLSB required, modify these
KeepMSB settings to optimize the
. — generated code, or example,
SpecifyPrecision avoid overflow or eliminate
Sum mode FullPrecision (default) bias, and then rerun the
KeepLSB verification.
KeepMSB For more information on
2 = fimath properties, see
SpecifyPrecision “fimath Object Properties”
(Fixed-Point Designer).
Generated File Settings |Value Description
Generated fixed-point file _fixpt (default) Specify the suffix to add to

name suffix

the generated fixed-point
file names.

Specify Type Proposal Options

Plotting and Reporting Values Description
Settings
Custom plot function "' (default) Specify the name of a

custom plot function to use
for comparison plots.

Plot with Simulation Data
Inspector

No (default)

Yes

Specify whether to use the
Simulation Data Inspector
for comparison plots.

Highlight potential data
type issues

No (default)

Yes

Specify whether to highlight
potential data types in the
generated html report. If
this option is turned on, the
report highlights single-
precision, double-precision,
and expensive fixed-point
operation usage in your
MATLAB code.

4-35

4 Fixed-Point Conversion

Log Data for Histogram

4-36

To log data for histograms:

1

3

In the Fixed-Point Conversion window, click Run Simulation and select Log data
for histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges are displayed
on the Variables tab. Using the simulation range data, the software proposes fixed-
point types for each variable based on the default type proposal settings, and displays
them in the Proposed Type column.

To view a histogram for a variable, click the variable’s Proposed Type field.

Whole Number Proposed Type

I_|numerict}-'pe(1, 161, (143
M

I§!=

S5im values covered 99% Signed

Suppaorted range -2 : 1.9999

You can view the effect of changing the proposed data types by:

* Selecting and dragging the white bounding box in the histogram window. This
action does not change the word length of the proposed data type, but modifies
the position of the binary point within the word so that the fraction length of the
proposed data type changes.

* Selecting and dragging the left edge of the bounding box to increase or decrease
the word length. This action does not change the fraction length or the position of
the binary point.

Log Data for Histogram

I_lnumerict}rpetl, 16, (14))
M

Sim values covered 99% Signed

Supported range -2 : 1.9999

- 1€

* Selecting and dragging the right edge to increase or decrease the fraction length
of the proposed data type. This action does not change the position of the binary
point. The word length changes to accommodate the fraction length.

* Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the automatic

A-)

conversion by clicking .

4-37

4 Fixed-Point Conversion

View and Modify Variable Information

4-38

View Variable Information

In the Fixed-Point Conversion tool, you can view information about the variables in the
MATLAB functions. To view information about the variables for the selected function, use
the Variables tab or pause over a variable in the code window. For more information, see
“Viewing Variables” on page 4-47.

You can view the variable information:
e Variable

Variable name. Variables are classified and sorted as inputs, outputs, persistent, or
local variables.

* Type
The original size, type, and complexity of each variable.
* Sim Min
The minimum value assigned to the variable during simulation.
* Sim Max
The maximum value assigned to the variable during simulation.
To search for a variable in the MATLAB code window and on the Variables tab, use Ctrl

+F.

Modify Variable Information

If you modify variable information, the app highlights the modified values using bold text.
You can modify the following fields:

* Static Min

You can enter a value for Static Min into the field or promote Sim Min information.
See “Promote Sim Min and Sim Max Values” on page 4-40.

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

View and Modify Variable Information

Static Max

You can enter a value for Static Max into the field or promote Sim Max information.
See “Promote Sim Min and Sim Max Values” on page 4-40.

Editing this field does not trigger static range analysis, but the app uses the edited
values in subsequent analyses.

Whole Number

The app uses simulation data to determine whether the values assigned to a variable
during simulation were always integers. You can manually override this field.

Editing this field does not trigger static range analysis, but the app uses the edited
value in subsequent analyses.

Proposed Type
You can modify the signedness, word length, and fraction length settings individually:

* On the Variables tab, modify the value in the ProposedType field.

Proposed Type

numerictype((1], |16,]I
A

Enter fraction length

R EFChyp

* In the code window, select a variable, and then modify the Proposed Type field.

If you selected to log data for a histogram, the histogram dynamically updates to
reflect the modifications to the proposed type. You can also modify the proposed type
in the histogram, see “Histogram” on page 4-53.

Revert Changes

To clear results and revert edited values, right-click the Variables tab and select
Reset entire table.

To revert the type of a selected variable to the type computed by the app, right-click
the field and select Undo changes.

4-39

4 Fixed-Point Conversion

» To revert changes to variables, right-click the field and select Undo changes for
all variables.

» To clear a static range value, right-click an edited field and select Clear this
static range.

* To clear manually entered static range values, right-click anywhere on the Variables
tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values

With the app, you can promote simulation minimum and maximum values to static
minimum and maximum values. This capability is useful if you have not specified static
ranges and you have simulated the model with inputs that cover the full intended
operating range.

To copy:
* A simulation range for a selected variable, select a variable, right-click, and then

select Copy sim range.

* Simulation ranges for top-level inputs, right-click the Static Min or Static Max column,
and then select Copy sim ranges for all top-level inputs.

* Simulation ranges for persistent variables, right-click the Static Min or Static Max
column, and then select Copy sim ranges for all persistent variables.

4-40

Automated Fixed-Point Conversion

Automated Fixed-Point Conversion

In this section...

“License Requirements” on page 4-41
“Automated Fixed-Point Conversion Capabilities” on page 4-41
“Code Coverage” on page 4-42

“Proposing Data Types” on page 4-45
“Locking Proposed Data Types” on page 4-47
“Viewing Functions” on page 4-47

“Viewing Variables” on page 4-47
“Histogram” on page 4-53

“Function Replacements” on page 4-55
“Validating Types” on page 4-55

“Testing Numerics” on page 4-56

“Detecting Overflows” on page 4-56

License Requirements

Fixed-point conversion requires the following licenses:

* Fixed-Point Designer
* MATLAB Coder™

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point
Conversion tool in HDL Coder projects. You can choose to propose data types based on
simulation range data, derived (also known as static) range data, or both.

You can manually enter static ranges. These manually-entered ranges take precedence
over simulation ranges and the tool uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 4-47.

4-41

4 Fixed-Point Conversion

4-42

For a list of supported MATLAB features and functions, see “MATLAB Language Features
Supported for Automated Fixed-Point Conversion” (MATLAB Coder).

During fixed-point conversion, you can:

» Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

* Propose fraction lengths based on default word lengths.

* Propose word lengths based on default fraction lengths.

* Optimize whole numbers.

* Specify safety margins for simulation min/max data.

+ Validate that you can build your project with the proposed data types.

» Test numerics by running the test bench with the fixed-point types applied.

* View a histogram of bits used by each variable.

* Detect overflows.

Code Coverage

By default, the Fixed-Point Conversion tool shows code coverage results. Your test files
must exercise the algorithm over its full operating range so that the simulation ranges are
accurate. The quality of the proposed fixed-point data types depends on how well the test
files cover the operating range of the algorithm with the accuracy that you want.
Reviewing code coverage results helps you verify that your test files are exercising the
algorithm adequately. If the code coverage is inadequate, modify the test files or add
more test files to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but run them one
at a time, the tool displays the coverage of the file that ran last.

The tool displays a color-coded coverage bar to the left of the code.

Automated Fixed-Point Conversion

LT s S B 4 R S o I

e el e e e i
R I S A A =

function ¥ = ex IndOrder filter (x)

persistent =
if isempty(z)

end

$#codegen

z = zeros(2,1);
end
% [b,a] = buttexr({2, 0.25)
= [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a =1 1, -0.942805041582063, 0.3333333333333333];
¥ = Zeros(size(x)):
for i=l:length(x)
vii) = bil)*=x(1) + =z(1):
z{1l) = bB(2)*x{i) + =z(2) - a(2) yvii):
z(2) = B(3)*=x(1) - al3) vii):
end
This table describes the color coding.
Coverage Bar |Indicates
Color
Green One of the following situations:
* The entry-point function executes multiple times and the code
executes more than one time.
* The entry-point function executes one time and the code executes
one time.
Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.
Orange The entry-point function executes multiple times, but the code
executes one time.
Red Code does not execute.

4-43

4 Fixed-Point Conversion

When you pause over the coverage bar, the color highlighting extends over the code. For
each section of code, the app displays the number of times that section executes.

]
|

B T S O R S T R JSL S NS T SR (R
I}
11

To verify that your test files are testing your algorithm over the intended operating range,
review the code coverage results.

Green If you expect sections of code to execute more frequently than the
coverage shows, either modify the MATLAB code or the test files.
Orange This behavior is expected for initialization code, for example, the

initialization of persistent variables. If you expect the code to execute
more than one time, either modify the MATLAB code or the test files.

Red If the code that does not execute is an error condition, this behavior is
acceptable. If you expect the code to execute, either modify the
MATLAB code or the test files. If the code is written conservatively
and has upper and lower boundary limits, and you cannot modify the
test files to reach this code, add static minimum and maximum values.
See “Computing Derived Ranges” on page 4-46.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage can speed up simulation. To turn
off code coverage, in the Fixed-Point Conversion tool:

4-44

Automated Fixed-Point Conversion

1 Click Run Simulation.
2 Clear Show code coverage.

Proposing Data Types

The Fixed-Point Conversion tool proposes fixed-point data types based on computed
ranges and the word length or fraction length setting. The computed ranges are based on
simulation range data, derived range data, or both. If you run a simulation and compute
derived ranges, the conversion tool merges the simulation and derived ranges.

Note You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually-entered ranges take precedence
over simulation ranges and the tool uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 4-47.

Running a Simulation

When you open the Fixed-Point Conversion tool, the tool generates an instrumented MEX
function for your MATLAB design. If the build completes without errors, the tool displays
compiled information (type, size, complexity) for functions and variables in your code. To
navigate to local functions, click the Functions tab. If build errors occur, the tool
provides error messages that link to the line of code that caused the build issues. You
must address these errors before running a simulation. Use the link to navigate to the
offending line of code in the MATLAB editor and modify the code to fix the issue. If your
code uses functions that are not supported for fixed-point conversion, the tool displays
them on the Function Replacements tab. See “Function Replacements” on page 4-55.

Before running a simulation, specify the test bench that you want to run. When you run a
simulation, the tool runs the test bench, calling the instrumented MEX function. If you
modify the MATLAB design code, the tool automatically generates an updated MEX
function before running the test bench.

If the test bench runs successfully, the simulation minimum and maximum values and the
proposed types are displayed on the Variables tab. If you manually enter static ranges for
a variable, the manually-entered ranges take precedence over the simulation ranges. If
you manually modify the proposed types by typing or using the histogram, the data types
are locked so that the tool cannot modify them.

4-45

4 Fixed-Point Conversion

4-46

If the test bench fails, the errors are displayed on the Simulation Output tab.

The test bench should exercise your algorithm over its full operating range. The quality of
the proposed fixed-point data types depends on how well the test bench covers the
operating range of the algorithm with the desired accuracy.

Optionally, you can select to log data for histograms. After running a simulation, you can
view the histogram for each variable. For more information, see “Histogram” on page 4-
53.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges, provide static
minimum and maximum values or proposed data types for all input variables. To improve
the analysis, enter as much static range information as possible for other variables. You
can manually enter ranges or promote simulation ranges to use as static ranges.
Manually-entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually-entered data types are locked so that the tool cannot modify
them. The tool uses these data types to calculate the input minimum and maximum values
and to derive ranges for other variables. For more information, see “Locking Proposed
Data Types” on page 4-47.

When you select Compute Derived Ranges, the tool runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/ -
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the
conversion tool performs faster static analysis. The computed ranges might be larger than
necessary. Select this option in cases where the static analysis takes more time than you
can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. The tool aborts the analysis when the timeout is reached.

Automated Fixed-Point Conversion

Locking Proposed Data Types

You can lock proposed data types against changes by the Fixed-Point Conversion tool
using one of the following methods:

* Manually setting a proposed data type in the Fixed-Point Conversion tool.

* Right-clicking a type proposed by the tool and selecting Lock computed value.
The tool displays locked data types in bold so that they are easy to identify. You can
unlock a type using one of the following methods:

* Manually overwriting it.

* Right-clicking it and selecting Undo changes. This action unlocks only the selected
type.

* Right-clicking and selecting Undo changes for all variables. This action
unlocks all locked proposed types.

Viewing Functions

You can view a list of functions in your project on the Navigation pane. This list also
includes function specializations and class methods. When you select a function from the
list, the MATLAB code for that function or class method is displayed in the Fixed-Point
Conversion tool code window.

4\ Fixed-Point Conversion - fun_with_matlab.prj EI@
m H:J . ; 9 Propose fraction lengths W D @
Function: = fun_with_matlab v |/ Propose word lengths

Run Simulation Compute Derived

Advanced Validate Types Test Numerics Help
- Ranges «

- -

Default word length: | 16

fun_with_matlab k

DATA COLLECTION NAVIGATION TYPE PROPOSAL VERIFICATION HELP

After conversion, the left pane also displays a list of output files including the fixed-point
version of the original algorithm. If your function is not specialized, the conversion retains
the original function name in the fixed-point filename and appends the fixed-point suffix.
For example, the fixed-point version of fun with matlab.mis

fun with matlab fixpt.m.

Viewing Variables

The Variables tab provides the following information for each variable in the function
selected in the Navigation pane:

4-47

4 Fixed-Point Conversion

4-48

* Type — The original data type of the variable in the MATLAB algorithm.

* Sim Min and Sim Max — The minimum and maximum values assigned to the variable
during simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown in
bold. Editing these fields does not trigger static range analysis, but the tool uses the
edited values in subsequent analyses. You can revert to the types proposed by the tool.

e Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values for all input variables. To improve the analysis,
enter as much static range information as possible for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a static
analysis to compute static ranges for variables in your code. When the analysis is
complete, the static ranges are displayed. You can edit the computed results. Edited
fields are shown in bold. Editing these fields does not trigger static range analysis, but
the tool uses the edited values in subsequent analyses. You can revert to the types
proposed by the tool.

* Whole Number — Whether all values assigned to the variable during simulation are
integers.

The Fixed-Point Conversion tool determines whether a variable is always a whole
number. You can modify this field. Edited fields are shown in bold. Editing these fields
does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

» The proposed fixed-point data type for the specified word (or fraction) length.
Proposed data types use the numerictype notation. For example,
numerictype(1l,16,12) denotes a signed fixed-point type with a word length of 16
and a fraction length of 12. numerictype(0,16,12) denotes an unsigned fixed-point
type with a word length of 16 and a fraction length of 12.

Because the tool does not apply data types to expressions, it does not display proposed
types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor
over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables
tab. The tool highlights occurrences in the code and displays only the variable with the
specified name on the Variables tab.

Automated Fixed-Point Conversion

Viewing Information for MATLAB Classes
The tool displays:

* Code for MATLAB classes and code coverage for class methods in the code window.
Use the Function list in the Navigation bar to select which class or class method to
view.

next

)‘5: use_counter

1 classdef Counter < handle
2 E properties
3 Value;
4 - end
]
] - methods (5tatic)
7 E function t = MRX VALUE ()
= t = 128;
a u end
10 - end
11
methods

o
L b
THT

function this = Counter|()

14 this.Value = 0;

15 u end

16 =] function out = next(this)

17 out = this.Value;

15 if thi=s.Value == this.MAX VALUE
19 this.Value = 0;

20 else

21 this.Value = this.Value + 1;
22 end

23 u end

24 - end

25 —end

4-49

4 Fixed-Point Conversion

* Information about MATLAB classes on the Variables tab.

Wariables | Function Replacements | Simulation Output

Variable

rl

rl

4-50

this

this.Walue

W

Type Sim Min Sirn Max Static Min Static Max Whole Mumber Proposed Type
Counter Unknown Unknown Mo

double] 1024 Yes nurmerictype(l, 11, 0
double] 1024 Yes nurmerictype(l, 11, 0

Specializations

If a function is specialized, the tool lists each specialization and numbers them
sequentially. For example, consider a function, dut, that calls subfunctions, foo and bar,
multiple times with different input types.

function y = dut(u, v)

ttl
tt2
tt3

ssl

ss2
ss3

y:

end

foo(u);
foo([u v]);
foo(complex(u,v));

bar(u);
bar([u v]);
bar(complex(u,v));

(ttl + ssl) + sum(tt2 + ss2) + real(tt3) + real(ss3);

function y = foo(u)

y
end

=u * 2;

function y = bar(u)

y
end

=u * 4;

Automated Fixed-Point Conversion

[-] function ¥ = dut(u, V)

= foo(u);
foo([u ¥]):
foo (complex (u,v)):

= bar(u);
bar([u v]);
bar (complex (u,v));

W o -] o Nk WM

= (ttl + s=21) + sum(tt2 + =s2) + real(tt3) + real(ss3);

—end

function v = foo(u)
vy =u* 2;

end

function ¥y = bar(u)
v =u % 4;

end

Varisbles | Functon Replacements |

Variable Type Whele Mumber Proposed Type

4 Input

u double Mo

W double Mo
4 Qutput

Y double Mo
4 Local

351 double Mo

If you select a specialization, the app displays only the variables used by the
specialization.

4-51

4 Fixed-Point Conversion

4\ Fixed-Point Conversion - dut.prj EI@

m Hu))) 9 Propose fraction lengths {g} v l @
o . Function: /= foo>1 w [Propose word lengths
Run Simulation Compute Derived : ‘ Default word length: 16 Advanced Validate Types Test Numerics Help
- Ranges - -
DATA COLLECTION NAVIGATION TYPE PROPOSAL VERIFICATION HELP
1 function y = dut(u, V)
2
3 ttl = foo(u);
4 tt2 = foo([u ¥]):
5] tt3 = foo(complex(u,v)):
&
7 =221 = bar(u):
=] 552 = bar([u v]);
9 2323 = bar (complex(u,v)):
10
11 v = (ttl + ==1) + sum(tt2 + =52) + real(ct3) + real(ss3):
12
13 end
14
15 function v = foo(u)
16 vy =u* 2;
17 end
1a
19 function y = bar(u)
20 ¥ =u * 4;
21 end
Wariahles | Function Replacements
Variable Type Sim Min Sirmn Max Static Min Static Max Whole Number Proposed Type
4
u double Mo
4
¥ double Mo

In the generated fixed-point code, the number of each fixed-point specialization matches
the number in the Source Code list which makes it easy to trace between the floating-
point and fixed-point versions of your code. For example, the generated fixed-point
function for foo > 1is named foo sl.

4-52

Automated Fixed-Point Conversion

|/ Editor - C:\Waork\specializations\codegen\dut\fixpt\dut_fixpt.m [Read Only] =3 =R ==

PUBLISH MRS El=le] @
I:I‘:l|:I = E L e s & S neert [fx - D % [2] Run Section é\?

| Compare = GoTo » Comment % g 1
New Open Save = l:>|] £ B Breakpoints. Run Runand @Amanoe Run and
- - - Advance Time

- > [Pt v (Find ~ Indent =R

FILE MAVIGATE EDIT BREAKPOINTS RUN
| dutm | dut_fixpt.m |+ |
1 E%%% TD
2 % 3
3 ® Generated by MATLAE 8.4 and Fixed-Point Designer 4.3 i
4 % ®
5 R e e e i i it i
& 2¥codegen
9 function y = dut_fixpt(u, ¥)
8
9 — fm = fimath('RoundingMethod', 'Floor', 'Overflowhction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'Full
10
ali = ttl = fi(foo_si(u), 0, 5, 0, fm):]
12 — Ttz = fi(foo_sz([fi(u, O, 5, 0, fm) vl), O, &, O, fm};:
13 - tt3 = fi(foo_s3(complex(u,v})), O, &, O, fm);
14
15 - 2=l = fi(bar_si(u), 0, & 0O, fm):
16 — ss2 = fi(bar sz([filu, 0, 5, 0, fm) vl), 0, 7, O, fm);
17 — =83 = fi(bar_s3(complex(u,v)), 0, 7, 0, fm):
18
19 - ¥ = fi((cel + ss1) + sum(tt2 + ==2) + real(tt3) + real(ss3), 0, 9, 0, fm);
20 -
21 - end
22
23 function y = foo_si(u)
24 — fm = fimath('RoundingMethod', 'Floor', 'Overflowhction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'Fu
25
26 — y = fi(uw * fi(2, 0, 2, 0, fm), O, 5, O, fm):
27 - end
28
29 function y = foo_s2 (u)
30 — fm = fimath('RoundingMethad', 'Floor', 'OverflowhAction', 'Wrap', 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, 'SumMode', 'Fu
3
32 — y = fifu * £i(2, 0, 2, 0, fm), O, & 0O, fm):
33 - end
34 2
I« [»

Ln 1 Col 1

Histogram

To log data for histograms, in the Fixed-Point Conversion window, click Run Simulation
and select Log data for histogram, and then click the Run Simulation button.

After simulation, to view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the percentage of
simulation values that the proposed data type covers. The bit weights are displayed along
the X-axis, and the percentage of occurrences along the Y-axis. Each bin in the histogram
corresponds to a bit in the binary word. For example, this histogram displays the range
for a variable of type numerictype(1,16,14).

4-53

4 Fixed-Point Conversion

-

Whele Murmber Proposed Type

I_|humerict}fpe(1, 161, (14))
M

* I
.

Sim values covered 99% Signed

Supported range -2 : 1.9999

1€

You can view the effect of changing the proposed data types by:

* Dragging the edges of the bounding box in the histogram window to change the
proposed data type.

I_|numerict}rpel[l, 1a6), |14
M

Sim values covered 99% Signed

Supported range -2 : 1.9999

20

* Selecting or clearing Signed.

4-54

Automated Fixed-Point Conversion

To revert to the types proposed by the automatic conversion, in the histogram window,
click @ .

Function Replacements

If your MATLAB code uses functions that do not have fixed-point support, the tool lists
these functions on the Function Replacements tab. You can choose to replace
unsupported functions with a custom function replacement or with a lookup table.

Wariables | Function Replacements | Simulation Output =

Enter a function to replace

Custom Function ¥+ | —

Function or Operator Replacement

foo_fixedpoint

MNane Auto Auto 1000

You can add and remove function replacements from this list. If you enter a function
replacements for a function, the replacement function is used when you build the project.

If you do not enter a replacement, the tool uses the type specified in the original MATLAB
code for the function.

Note Using this table, you can replace the names of the functions but you cannot replace
argument patterns.

Validating Types

Selecting Validate Types validates the build using the proposed fixed-point data types. If

the validation is successful, you are ready to test the numerical behavior of the fixed-point
MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the Type
Validation Output tab. If errors or warning occur:

* On the Variables tab, inspect the proposed types and manually modified types to
verify that they are valid.

4-55

4 Fixed-Point Conversion

4-56

* On the Function Replacements tab, verify that you have provided function
replacements for unsupported functions.

Testing Numerics

After validating the proposed fixed-point data types, select Test Numerics to verify the
behavior of the fixed-point MATLAB algorithm. By default, if you added a test bench to
define inputs or run a simulation, the tool uses this test bench to test numerics. The tool
compares the numerical behavior of the generated fixed-point MATLAB code with the
original floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the tool generates an additional plot for each scalar output. This plot
shows the floating-point and fixed-point results and the difference between them. For non-
scalar outputs, only the error information is shown.

If the numerical results do not meet your desired accuracy after fixed-point simulation,
modify fixed-point data type settings and repeat the type validation and numerical testing
steps. You might have to iterate through these steps multiple times to achieve the desired
results.

Detecting Overflows

When testing numerics, selecting Use scaled doubles to detect overflows enables
overflow detection. When this option is selected, the conversion tool runs the simulation
using scaled double versions of the proposed fixed-point types. Because scaled doubles
store their data in double-precision floating-point, they carry out arithmetic in full range.
They also retain their fixed-point settings, so they are able to report when a computation
goes out of the range of the fixed-point type. .

If the tool detects overflows, on its Overflow tab, it provides:

» Alist of variables and expressions that overflowed
» Information on how much each variable overflowed
* Alink to the variables or expressions in the code window

Automated Fixed-Point Conversion

Wariables | Function Replacements | Overflows

-

Function | lne | Description
Ay overflow fixpt 7 Owverflow error in expression ¥\
Ay overflow fispt 7 Owverflow error in expression ',
A owverflow fispt 10 Owverflow error in expression 'z,
Ay owverflow fispt 10 Overflow error in expression 'z = fifxky, 0, 8, 0, fm),
Ay owverflow fispt 10 Owverflow error in expression fifx®y, 0, 8, 0, fm}.
A owverflow fispt 10 Owverflow error in expression '
Ay overflow fixpt 10 Owverflow arror in expression =%y,
Ay overflow fispt 10 Owverflow error in expression ',
A owverflow fispt 11 Owverflow error in expression 'z,

If your original algorithm uses scaled doubles, the tool also provides overflow information

for these expressions.

See Also

“Detect Overflows” (MATLAB Coder)

4-57

4 Fixed-Point Conversion

Custom Plot Functions

4-58

The Fixed-Point Conversion tool provides a default time series based plotting function.
The conversion process uses this function at the test numerics step to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. For example, plots that show eye diagrams and
bit error differences are more suitable in the communications domain and histogram
difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point
Conversion tool facilitates custom plotting by providing access to the raw logged input
and output data before and after fixed-point conversion. You supply a custom plotting
function to visualize the differences between the floating-point and fixed-point results. If
you specify a custom plot function, the fixed-point conversion process calls the function
for each input and output variable, passes in the name of the variable and the function
that uses it, and the results of the floating-point and fixed-point simulations.

Your function should accept three inputs:
* A structure that holds the name of the variable and the function that uses it.
Use this information to:

* Customize plot headings and axes.
* Choose which variables to plot.
* Generate different error metrics for different output variables.
* A cell array to hold the logged floating-point values for the variable.
This cell array contains values observed during floating-point simulation of the
algorithm during the test numerics phase. You might need to reformat this raw data.
* Acell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the converted
design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and
then set Custom plot function to the name of your plot function.

Custom Plot Functions

In the programmatic workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function. See “Visualize Differences
Between Floating-Point and Fixed-Point Results” on page 4-60.

4-59

4 Fixed-Point Conversion

Visualize Differences Between Floating-Point and Fixed-
Point Results

4-60

This example shows how to configure the codegen function to use a custom plot function
to compare the behavior of the generated fixed-point code against the behavior of the
original floating-point MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion
process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion
you might want to visualize the numerical differences in a view that is more suitable for
your application domain. This example shows how to customize plotting and produce
scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

To complete this example, you must install the following products:

+ MATLAB
* Fixed-Point Designer
* C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a New Folder and Copy Relevant Files

Create a local working folder, for example, c:\custom plot.

2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB
command line, enter:
cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 CopythemyFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

Type Name Description

Function code |myFilter.m Entry-point MATLAB function

Visualize Differences Between Floating-Point and Fixed-Point Results

Type Name Description

Test file myFilterTest.m MATLAB script that tests
myFilter.m

Plotting function |plotDiff.m Custom plot function

MAT-file filterData.mat Data to filter.

The myFilter Function
function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)
b = complex(zeros(1,16));
h = complex(zeros(1,16));

h(8) = 1;
end
b = [in, b(1l:end-1)];
y = b*h."';
errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));
update = 0.001*conj(b)*y*errf;
h = h + update;
h(8) = 1;
ho = h;
end

The myfFilterTest File

% load data
data = load('filterData.mat');
d = data.symbols;

for idx = 1:4000
y = myFilter(d(idx));
end

The plotDiff Function

% varInfo - structure with information about the variable. It has the following fields
i) name

o°

4-61

4 Fixed-Point Conversion

ii) functionName
floatVals - cell array of logged original values for the 'varInfo.name' variable
fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-|
function plotDiff(varInfo, floatVals, fixedVals)
varName = varInfo.name;
fcnName = varInfo.functionName;

o° o o°

% escape the ' 's because plot titles treat these as subscripts
escapedVarName = regexprep(varName,' ', "\\ ');
escapedFcnName = regexprep(fcnName,' ', "\\ ');

% flatten the values
flatFloatVals = floatVals(l:end);
flatFixedVals = fixedVals(l:end);

% build Titles
floatTitle [escapedFcnName ' > ' 'float : ' escapedVarName];
fixedTitle [escapedFcnName ' > ' 'fixed : ' escapedVarName];

data = load('filterData.mat');

switch varName
case 'y
x_vec = data.symbols;

figure('Name', 'Comparison plot', 'NumberTitle', 'off');

% plot floating point values

y vec = flatFloatVals;

subplot(1l, 2, 1);

plotScatter(x vec, y vec, 100, floatTitle);

% plot fixed point values
y vec = flatFixedVals;
subplot(1, 2, 2);
plotScatter(x vec, y vec, 100, fixedTitle);
otherwise
% Plot only output 'y' for this example, skip the rest
end
end

function plotScatter(x vec, y vec, n, figTitle)

4-62

Visualize Differences Between Floating-Point and Fixed-Point Results

% plot the last n samples

x _plot = x vec(end-n+l:end);
y plot = y vec(end-n+l:end);
hold on

scatter(real(x plot),imag(x plot), 'bo');

hold on
scatter(real(y plot),imag(y plot), 'rx');

title(figTitle);
end

Set Up Configuration Object
1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and
numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';
fxptcfg.PlotFunction = 'plotDiff"';
fxptcfg.TestNumerics = true;

fxptcfg. LogIOForComparisonPlotting = true;
fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to fixed-point MATLAB code. You
do not need to specify input types for the codegen command because it infers the types
from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The conversion process generates fixed-point code using a default word length of 16 and
then runs a fixed-point simulation by running the myFilterTest.m function and calling
the fixed-point version of myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the

custom plotting function, plotDiff.m, for these plots, the conversion process uses this
function to generate the comparison plot.

4-63

4 Fixed-Point Conversion

"4 Figures - Testbench: Comparisan plot 16-bit WL (15:26:35)
File Edit View Insert Tools Debug Desktop Window Help
NEde M AKODLL- G 08 nDd

Testbench: Comparison plot 16-bit WL (15:26:35)

myFilter > float : y

o o ©
o fes] oo %o o
oo @0
08| a o
o o oo o
c% o ? €]
06 [o
; o o
o o &P o
o o
04
02
ot
-02
.04}
o
oo e o Ll
il o o
o %% © ® g0
D ¢ e o
08} LA 0
o © @
5| L . .
-1 0.5 0 0.5

= [m] XI,
CIER
BHOEHS0

myFilter > fixed : y

Q] x o L] ®
[} fes] 000 %D ©
(ol o] *xO
L x
0.8 2 a 8 3 o * ro
D Oy o oB
T B® q g %
06} 5 * xR
8 o % S
o] x oX &P x
x x (o] Q
x
0.4
x
x
% ® x
02 < "
P x x
* X
0 . X
x ke
x
-0.2
g
04
x x
o x
oo 8 g © o]
I8 o * % o%o
L 00 %P P 00 o
o R
o (e8] "¢
7DE * ° x
% o © @
1 L3 L L i J
- 0.5 0 05 1

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-
point results match the floating-point results.

4-64

Visualize Differences Between Floating-Point and Fixed-Point Results

[& Figures - Testbench: Comparison plot 24-bit WL (1
File Edit View Insert Tools Debug Desktop Window Help

Ddde k% \é".'i@@d'ﬂﬂﬁ L=

| Testbench: Comparison plot 24-bit WL (15:28:44)

myFilter > float : y

o o o
[} o0 ooo Com
o) @o
08 o 0
- 3 oo 4
(o]
06 =
1 o &
o o %
o O
04+
0.2
or
02 r
04+
o
ooo 8 s ©
Shi 00
© o [ox] $
o © foe]
-08 o
o ©
A L L
-1 0.5 05

myFilter > fixed : y

- x|

HODE &0

o o o
o] fos} oco%m o
o0 @O
¥ 3 2 o
oo
[} %‘ 8
0.6 [2
: o
OD o & o
c o
0.4
02
ol
-02 ¢
04 |
o
oo, 8 5 © o
s o0
0%}00 ® £ o
08t o o ooo
o © @
A . .)
8 0.5 0.5 1

4-65

4 Fixed-Point Conversion

Inspecting Data Using the Simulation Data Inspector

In this section...

“What Is the Simulation Data Inspector?” on page 4-66

“Import Logged Data” on page 4-66

“Export Logged Data” on page 4-66

“Group Signals” on page 4-67

“Run Options” on page 4-67

“Create Report” on page 4-67

“Comparison Options” on page 4-67

“Enabling Plotting Using the Simulation Data Inspector” on page 4-67
“Save and Load Simulation Data Inspector Sessions” on page 4-68

What Is the Simulation Data Inspector?

The Simulation Data Inspector allows you to view data logged during the fixed-point
conversion process. You can use it to inspect and compare the inputs and outputs to the
floating-point and fixed-point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data
Inspector.

Import Logged Data

Before importing data into the Simulation Data Inspector, you must have previously
logged data to the base workspace or to a MAT-file.

Export Logged Data

The Simulation Data Inspector provides the capability to save data collected by the fixed-
point conversion process to a MAT-file that you can later reload. The format of the MAT-
file is different from the format of a MAT-file created from the base workspace.

4-66

Inspecting Data Using the Simulation Data Inspector

Group Signals
You can customize the organization of your logged data in the Simulation Data Inspector

Runs pane. By default, data is first organized by run. You can then organize your data by
logged variable or no hierarchy.

Run Options

You can configure the Simulation Data Inspector to:

* Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the
run list. To append new runs to the top of the list, select Add new runs at top.

* Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run
Options.

Create Report

You can create a report of the runs or comparison plots. Specify the name and location of
the report file. By default, the Simulation Data Inspector overwrites existing files. To
preserve existing reports, select If report exists, increment file name to prevent
overwriting.

Comparison Options

To change how signals are matched when runs are compared, specify the Align by and
Then by parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector

To enable the Simulation Data Inspector, see “Enable Plotting Using the Simulation Data
Inspector” on page 4-69.

4-67

4 Fixed-Point Conversion

4-68

Save and Load Simulation Data Inspector Sessions

If you have data in the Simulation Data Inspector and you want to archive or share the
data to view in the Simulation Data Inspector later, save the Simulation Data Inspector
session. When you save a Simulation Data Inspector session, the MAT-file contains:

* All runs, data, and properties from the Runs and Comparisons panes.

* Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

On the Visualize tab, click Open.

Browse, select the MAT-file saved from the Simulation Data Inspector, and click
Open.

3 If data in the session is plotted on multiple subplots, on the Format tab, click
Subplots and select the subplot layout.

Enable Plotting Using the Simulation Data Inspector

Enable Plotting Using the Simulation Data Inspector

In this section...

“From the UI” on page 4-69
“From the Command Line” on page 4-69

From the Ul

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point logged input and output data. In the Fixed-Point Conversion tool:

Click Advanced.

2 Inthe Advanced Settings dialog box, set Plot with Simulation Data Inspector to
Yes.

3 At the Test Numerics stage in the conversion process, click Test Numerics, select

Log inputs and outputs for comparison plots, and then chck’)

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges”
(MATLAB Coder).

From the Command Line

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point input and output data logged using the function. At the MATLAB command
line:

1 Create a fixed-point configuration object and configure the test file name.
fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'dti test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log
inputs and outputs for comparison plotting and select to use the Simulation Data
Inspector to plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;
fixptcfg.PlotWithSimulationDataInspector = true;

4-69

4 Fixed-Point Conversion

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges”
(MATLAB Coder).

4-70

Replacing Functions Using Lookup Table Approximations

Replacing Functions Using Lookup Table Approximations

The software provides an option to generate lookup table approximations for continuous
and stateless single-input, single-output functions in your original MATLAB code. These
functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point and
to replace your own custom functions. The fixed-point conversion process infers the
ranges for the function and then uses an interpolated lookup table to replace the function.
You can control the interpolation method and number of points in the lookup table. By
adjusting these settings, you can tune the behavior of replacement function to match the
behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site
of the function that needs replacement.

To use lookup table approximations, see:

* coder.approximation
* “Replace the exp Function with a Lookup Table” on page 4-80
* “Replace a Custom Function with a Lookup Table” on page 4-72

4-71

4 Fixed-Point Conversion

Replace a Custom Function with a Lookup Table

4-72

In this section...

“Using the HDL Coder App” on page 4-72
“From the Command Line” on page 4-77

With HDL Coder, you can generate lookup table approximations for functions that do not
support fixed-point types, and replace your own functions. To replace a custom function
with a Lookup Table, use the HDL Coder app, or the fiaccel codegen function.

Using the HDL Coder App

This example shows how to replace a custom function with a Lookup Table using the HDL
Coder app.

Create Algorithm and Test Files
In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to
replace.

function y = custom_fcn(x)
y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom_fcn.

function y = call custom_ fcn(x)
y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call custom fcn.
close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
y(itr) = call custom fcn(x(itr));
end
plot(x, y);

Replace a Custom Function with a Lookup Table

Create and Set up a HDL Coder Project

Navigate to the work folder that contains the file for this example.

2 To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set
Name to custom project.prj and click OK. The project opens in the MATLAB
workspace.

3 In the project window, on the MATLAB Function tab, click the Add MATLAB
function link. Browse to the file call custom_ fcn.m, and then click OK to add the
file to the project.

Define Input Types

1 To define input types for call custom fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.
3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow
Advisor window, click Fixed-Point Conversion.

2 Toreplace custom fcn with a Lookup Table, on the Function Replacements tab,
enter custom fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design
minimum and maximum values that the app detects by running a simulation or
computing derived ranges.

4-73

4 Fixed-Point Conversion

4-74

4\ Workflow Advisor - custom_project.prj

=] HDL Workflow Advisor
’o Define Input Types
__| Fixed-Point Conversion
0 Select Code Generation Target
[HDL Code Generation
E}J HDL Verification
I Verify with HDL Test Bench
[Verify with Cosimulation
“ [Verify with FPGA-in-the-Loop

e e=s
] [. (g
m [..b O Propose fraction lengths r@j
™ Propose word lengths
it ; Functn: /* call_custom fen ~ |4 VERIFICATION | HELP
Run Simulation ~ Compute Derived . . Default word length: 14 Advanced -
- Ranges -
- -
DATA COLLECTION NAVIGATION TYPE PROPOSAL
1 function y = call_ custom fen(x)
¥ = custom fen (x);
3 end
“fariables | Function Replacements | Simulation Output
Enter a function to replace Custom Function ¥+ | —
Function or Operator Replacement Custom Function
Lookup Table
=]
exp Replacernent required to use fixed-point
=]
custom_fcn Linear Auto Auto 1000

3 Under Run Simulation, select Log data for histogram, and then click Run

Simulation. Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges
on the Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.

Replace a Custom Function with a Lookup Table

o

4 Figures - Testbench:float (14:03:26)

Testbench:float (14:03:26)

File Edit View Insert Tools Debug Desktop Window Help ™~ | 2 X

bl-‘lﬂeli [::\‘ t\-_\-{mﬁ'@@ﬁ' »ED]EE@

-

(=l](S)

0.8

06T

0.4

0.2}

Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software
cover the full simulation range. To view logged histogram data for a variable, click its

Proposed Type field.

The histogram provides range information and the percentage of simulation range

that the proposed data type covers.

4-75

4 Fixed-Point Conversion

Yariahles | Function Replacements | Type Validation Qutput ~ |

Variable Type Sim Min Sim Max Static Min Static Max Whole Nu... Proposed Type
E Input
B Output 2
Y double 1] 1

Sim values coverec 100% Signed

Supported range -16 : 15.998

20
2 To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call custom fcn fixpt.

3 To view the generated fixed-point code, click the call custom fcn fixpt link.

The generated fixed-point function, call custom fcn fixpt.m, calls this
approximation instead of calling custom fcn.

function y = call custom fcn fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

function fm = get fimath()
fm = fimath('RoundingMethod', 'Floor',...
'OverflowAction', 'Wrap',...
'"ProductMode', 'FullPrecision', ...
'MaxProductWordLength', 128,...
'SumMode', 'FullPrecision', ...

4-76

Replace a Custom Function with a Lookup Table

'MaxSumWordLength', 128);
end

From the Command Line
Prerequisites

To complete this example, you must install the following products:

+ MATLAB
» Fixed-Point Designer
* C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create a MATLAB function, custom_fcn.m. This is the function that you want to replace.

function y = custom_fcn(x)
y = 1./(1+exp(-x));
end

Create a wrapper function that calls custom fcn.m.

function y = call custom fcn(x)
y = custom fcn(x);
end

Create a test file, custom_test.m, that uses call custom fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
y(itr) = call custom fcn(x(itr));
end
plot(x, y);

Create a function replacement configuration object to approximate custom_fcn. Specify
the function handle of the custom function and set the number of points to use in the
lookup table to 50.

4-77

4 Fixed-Point Conversion

4-78

g = coder.approximation('Function', 'custom fcn',...
‘CandidateFunction',@custom fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt"');
fixptcfg.TestBenchName = 'custom test’;
fixptcfg.TestNumerics = true;
fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call custom fcn
codegen generates fixed-point MATLAB code in call custom fcn fixpt.m.
To view the generated fixed-point code, click the link to call custom fcn fixpt.

The generated code contains a lookup table approximation, replacement custom fcn,
for the custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. The lookup
table uses 50 points as specified. By default, it uses linear interpolation and the minimum
and maximum values detected by running the test file.

The generated fixed-point function, call custom fcn fixpt, calls this approximation
instead of calling custom_fcn.

function y = call custom fcn fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

See Also

coder.approximation

See Also

Related Examples
. “Replace the exp Function with a Lookup Table” on page 4-80

More About

. “Replacing Functions Using Lookup Table Approximations” on page 4-71

4-79

4 Fixed-Point Conversion

Replace the exp Function with a Lookup Table

4-80

With HDL Coder, you can handle functions that are not supported for fixed point and
replace your own functions. To replace a custom function with a Lookup Table, use the
HDL Coder App, or the fiaccel codegen function.

In this section...

“From the UI” on page 4-80

“From the Command Line” on page 4-85

From the Ul

This example shows how to replace a custom function with a Lookup Table using the HDL
Coder app.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn, which is the function that you want to
replace.

function y = custom_fcn(x)
y = 1./(1+exp(-x));
end

2 Create a wrapper function that calls custom_fcn.

function y = call custom_ fcn(x)
y = custom_fcn(x);
end

3 Create a test file, custom_test, which uses call custom fcn.
close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1
y(itr) = call _custom fcn(x(itr));
end
plot(x, y);

Replace the exp Function with a Lookup Table

Create and Set up a HDL Coder Project

Navigate to the work folder that contains the file for this example.

2 To open the HDL Coder app, in the MATLAB command prompt, enter hdlcoder. Set
Name to custom project.prj and click OK. The project opens in the MATLAB
workspace.

3 In the project window, on the MATLAB Function tab, click the Add MATLAB
function link. Browse to the file call custom_ fcn.m, and then click OK to add the
file to the project.

Define Input Types

1 To define input types for call custom fcn.m, on the MATLAB Function tab, click
Autodefine types.

2 Add custom test as a test file, and then click Run.

From the test file, HDL Coder determines that x is a scalar double.
3 Click Use These Types.

Replace custom_fcn with Lookup Table

1 To open the HDL Workflow Advisor, click Workflow Advisor, and in the Workflow
Advisor window, click Fixed-Point Conversion.

2 Toreplace custom fcn with a Lookup Table, on the Function Replacements tab,
enter custom fcn, select Lookup Table, and then click +.

By default, the lookup table uses linear interpolation, 1000 points, and design
minimum and maximum values that the app detects by running a simulation or
computing derived ranges.

4-81

4 Fixed-Point Conversion

4-82

4\ Workflow Advisor - custom_project.prj

=] HDL Workflow Advisor
’o Define Input Types
__| Fixed-Point Conversion
0 Select Code Generation Target
[HDL Code Generation
E}J HDL Verification
I Verify with HDL Test Bench
[Verify with Cosimulation
“ [Verify with FPGA-in-the-Loop

e e=s
] [. (g
m [..b O Propose fraction lengths r@j
™ Propose word lengths
it ; Functn: /* call_custom fen ~ |4 VERIFICATION | HELP
Run Simulation ~ Compute Derived . . Default word length: 14 Advanced -
- Ranges -
- -
DATA COLLECTION NAVIGATION TYPE PROPOSAL
1 function y = call_ custom fen(x)
¥ = custom fen (x);
3 end
“fariables | Function Replacements | Simulation Output
Enter a function to replace Custom Function ¥+ | —
Function or Operator Replacement Custom Function
Lookup Table
=]
exp Replacernent required to use fixed-point
=]
custom_fcn Linear Auto Auto 1000

3 Under Run Simulation, select Log data for histogram, and then click Run

Simulation. Verify that custom_test file is selected as the test file.

The simulation runs and the tool displays simulation minimum and maximum ranges
on the Variables tab. HDL Coder plots the simulation results in the MATLAB Editor.

Replace the exp Function with a Lookup Table

o

4 Figures - Testbench:float (14:03:26)

Testbench:float (14:03:26)

File Edit View Insert Tools Debug Desktop Window Help ™~ | 2 X

bl-‘lﬂeli [::\‘ t\-_\-{mﬁ'@@ﬁ' »ED]EE@

-

(=l](S)

0.8

06T

0.4

0.2}

Validate Fixed-Point Types

1 In the Proposed Type column, verify that the fixed-point types proposed by software
cover the full simulation range. To view logged histogram data for a variable, click its

Proposed Type field.

The histogram provides range information and the percentage of simulation range

that the proposed data type covers.

4-83

4 Fixed-Point Conversion

Yariahles | Function Replacements | Type Validation Qutput ~ |

Variable Type Sim Min Sim Max Static Min Static Max Whole Nu... Proposed Type
E Input
B Output 2
Y double 1] 1

Sim values coverec 100% Signed

Supported range -16 : 15.998

20
2 To validate the build by using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call custom fcn fixpt.

3 To view the generated fixed-point code, click the call custom fcn fixpt link.

The generated fixed-point function, call custom fcn fixpt.m, calls this
approximation instead of calling custom fcn.

function y = call custom fcn fixpt(x)
fm = get fimath();

y = fi(replacement custom fcn(x), 0, 14, 14, fm);
end

function fm = get fimath()
fm = fimath('RoundingMethod', 'Floor',...
'OverflowAction', 'Wrap',...
'"ProductMode', 'FullPrecision', ...
'MaxProductWordLength', 128,...
'SumMode', 'FullPrecision', ...

4-84

Replace the exp Function with a Lookup Table

'MaxSumWordLength', 128);
end

From the Command Line

This example shows how to replace the exp function with a lookup table approximation in
the generated fixed-point code using the function.

Prerequisites

To complete this example, you must install the following products:

MATLAB
Fixed-Point Designer
C compiler

See https://www.mathworks.com/support/compilers/current release/.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Create Algorithm and Test Files

1

Create a MATLAB function, my fcn.m, that calls the exp function.

function y = my fcn(x)
y = exp(x);
end

Create a test file, my fcn test.m, that usesmy fcn.m.

close all

x = linspace(-10,10,1e3);
for itr = 1e3:-1:1

y(itr) = my fcn(x(itr));
end
plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function,
using the default settings of linear interpolation and 1000 points in the lookup table.

4-85

4 Fixed-Point Conversion

4-86

g = coder.approximation('exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'my fcn test’';
fixptcfg.TestNumerics = true;
fixptcfg.DefaultWordLength = 16;
fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.
codegen -float2fixed fixptcfg my fcn

View Generated Fixed-Point Code
To view the generated fixed-point code, click the link tomy fcn_fixpt.

The generated code contains a lookup table approximation, replacement exp, for the
exp function. The fixed-point conversion process infers the ranges for the function and
then uses an interpolated lookup table to replace the function. By default, the lookup
table uses linear interpolation, 1000 points, and the minimum and maximum values
detected by running the test file.

The generated fixed-point function, my fcn fixpt, calls this approximation instead of
calling exp.

function y = my fcn fixpt(x)
fm = get fimath();

y = fi(replacement exp(x), 0, 16, 1, fm);
end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not

See Also

match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

See Also

coder.approximation

Related Examples

. “Replace a Custom Function with a Lookup Table” on page 4-72

More About

. “Replacing Functions Using Lookup Table Approximations” on page 4-71

4-87

4 Fixed-Point Conversion

Data Type Issues in Generated Code

4-88

Within the fixed-point conversion report, you have the option to highlight MATLAB code
that results in double, single, or expensive fixed-point operations. Consider enabling these
checks when trying to achieve a strict single, or fixed-point design.

These checks are disabled by default.

Enable the Highlight Option in a Project

1 Open the Settings menu.

2 Under Plotting and Reporting, set Highlight potential data type issues to Yes.
Enable the Highlight Option at the Command Line

1 Create a fixed-point code configuration object:
cfg = coder.config('fixpt');

2 Setthe HighlightPotentialDataTypeIssues property of the configuration
object to true.

cfg.HighlightPotentialDataTypeIlssues = true;

Stowaway Doubles
When trying to achieve a strict-single or fixed-point design, manual inspection of code can

be time-consuming and error prone. This check highlights all expressions that result in a
double operation.

Stowaway Singles

This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations

The expensive fixed-point operations check identifies optimization opportunities for fixed-
point code. It highlights expressions in the MATLAB code that require cumbersome
multiplication or division, expensive rounding, expensive comparison, or multiword

Data Type Issues in Generated Code

operations. For more information on optimizing generated fixed-point code, see “Tips for
Making Generated Code More Efficient” (Fixed-Point Designer).

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid inputs
to a multiply or divide operation that has word lengths larger than the base integer type
of your processor. Operations with larger word lengths can be handled in software, but
this approach requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses "no
effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method. This check identifies expensive rounding operations in
multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, when comparing an unsigned integer to a signed integer,
one of the inputs must first be cast to the signedness of the other before the comparison
operation can be performed. Consider optimizing the data types of the input arguments
so that a cast is not required in the generated code.

Multiword Operations

Multiword operations can be inefficient on hardware. When an operation has an input or
output data type larger than the largest word size of your processor, the generated code
contains multiword operations. You can avoid multiword operations in the generated code
by specifying local fimath properties for variables. You can also manually specify input
and output word lengths of operations that generate multiword code.

4-89

Code Generation

* “Create and Set Up Your Project” on page 5-2

» “Specify Properties of Entry-Point Function Inputs” on page 5-6

* “Basic HDL Code Generation with the Workflow Advisor” on page 5-10
+ “HDL Code Generation from System Objects” on page 5-15

* “Code Generation Reports” on page 5-20

* “Generate Instantiable Code for Functions” on page 5-26

* “Integrate Custom HDL Code Into MATLAB Design” on page 5-28

* “Enable MATLAB Function Block Generation” on page 5-34

» “System Design with HDL Code Generation from MATLAB and Simulink”
on page 5-36

* “Generate HDL Code from MATLAB Code Using the Command Line Interface”
on page 5-40

» “Specify the Clock Enable Rate” on page 5-45

» “Specify Test Bench Clock Enable Toggle Rate” on page 5-47

* “Generate an HDL Coding Standard Report from MATLAB” on page 5-49
* “Generate an HDL Lint Tool Script” on page 5-53

* “Generate a Board-Independent IP Core from MATLAB” on page 5-56

* “Minimize Clock Enables” on page 5-59

5 Code Generation

Create and Set Up Your Project

In this section...

“Create a New Project” on page 5-2
“Open an Existing Project” on page 5-4
“Add Files to the Project” on page 5-4

Create a New Project

1 At the MATLAB command line, enter:

hdlcoder
2 Enter a project name in the project dialog box and click OK.

HDL Coder creates the project in the local working folder, and, by default, opens the
project in the right side of the MATLAB workspace.

5-2

Create and Set Up Your Project

Workspace | HOL Code Generation (%) .
mydesign.prj v G-
MATLAB Function (2

Specify the top-level MATLAB design
function (Design Under Test).

Add only the file that you would call directly
from MATLAB. Do not add files that are
called by this function.

Add MATLAB function

MATLAE Test Bench (2

Specify the top-level MATLAB test script or
function that calls the MATLAE design
function.

Add only the file that you would call directly

from MATLAB. Do not add files that are
called by this test file,

Add files

Specify your design function and test
bench above, then use the Worlkflow
Advisor to generate code.

gy Workflow Advisor

Alternatively, you can create a new HDL Coder project from the apps gallery:

1

2
3

On the Apps tab, on the far right of the Apps section, click the arrow ™.

Under Code Generation, click HDL Coder.

Enter a project name in the project dialog box and click OK.

5-3

5 Code Generation

Open an Existing Project

At the MATLAB command line, enter:
open project _name
where project name specifies the full path to the project file.

Alternatively, navigate to the folder that contains your project and double-click the .prj
file.

Add Files to the Project
Add the MATLAB Function (Design Under Test)

First, you must add the MATLAB file from which you want to generate code to the project.
Add only the top-level function that you call from MATLAB (the Design Under Test). Do
not add files that are called by this file. Do not add files that have spaces in their names.
The path must not contain spaces, as spaces can lead to code generation failures in
certain operating system configurations.

To add a file, do one of the following:

* In the project pane, under MATLAB Function , click the Add MATLAB function link
and browse to the file.

* Drag a file from the current folder and drop it in the project pane under MATLAB
Function.

If the functions that you added have inputs, and you do not specify a test bench, you must
define these inputs. See “Specify Properties of Entry-Point Function Inputs” on page 5-
6.

Add a MATLAB Test Bench

You must add a MATLAB test bench unless your design does not need fixed-point
conversion and you do not want to generate an RTL test bench. If you do not add a test
bench, you must define the inputs to your top-level MATLAB function. For more
information, see “Specify Properties of Entry-Point Function Inputs” on page 5-6.

To add a test bench, do one of the following:

Create and Set Up Your Project

In the project panel, under MATLAB Test Bench, click the Add MATLAB test bench
link and browse to the file.

Drag a file from the current folder and drop it in the project pane under MATLAB
Test Bench.

3-5

5 Code Generation

Specify Properties of Entry-Point Function Inputs

In this section...

“When to Specify Input Properties” on page 5-6

“Why You Must Specify Input Properties” on page 5-6
“Properties to Specify” on page 5-6

“Rules for Specifying Properties of Primary Inputs” on page 5-8
“Methods for Defining Properties of Primary Inputs” on page 5-8

When to Specify Input Properties

If you supply a test bench for your MATLAB algorithm, you do not need to specify the
primary function inputs manually. The HDL Coder software uses the test bench to infer
the data types.

Why You Must Specify Input Properties

HDL Coder must determine the properties of all variables in the MATLAB files at compile
time. To infer variable properties in MATLAB files, HDL Coder must be able to identify the
properties of the inputs to the primary function, also known as the top-level or entry-point
function. Therefore, if your primary function has inputs, you must specify the properties
of these inputs, to HDL Coder. If your primary function has no input parameters, HDL
Coder can compile your MATLAB file without modification. You do not need to specify
properties of inputs to local functions or external functions called by the primary function.

If you use the tilde (~) character to specify unused function inputs in an HDL Coder
project, and you want a different type to appear in the generated code, specify the type.
Otherwise, the inputs default to real, scalar doubles.

Properties to Specify

If your primary function has inputs, you must specify the following properties for each
input.

For

Specify properties

Class Size Complexity | numerictype |fimath

Specify Properties of Entry-Point Function Inputs

For Specify properties

Fixed-point < N4 o v
inputs

Other inputs « i i

The following data types are not supported for primary function inputs, although you can

use them within the primary function:

* structure
* matrix

Variable-size data is not supported in the test bench or the primary function.

Default Property Values

HDL Coder assigns the following default values for properties of primary function inputs.

Property Default
class double
size scalar
complexity real
numerictype No default
fimath hdlfimath

Supported Classes

The following table presents the class names supported by HDL Coder.

Class Name Description

logical Logical array of true and false values
char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

intl6 16-bit signed integer array

uintl6

16-bit unsigned integer array

5-7

5 Code Generation

Class Name Description

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or fixed-point
number array

double Double-precision floating-point or fixed-point
number array

embedded. fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs

When specifying the properties of primary inputs, follow these rules:

* You must specify the class of all primary inputs. If you do not specify the size or
complexity of primary inputs, they default to real scalars.

* For each primary function input whose class is fixed point (fi), you must specify the
input numerictype and fimath properties.

Methods for Defining Properties of Primary Inputs

Method

Advantages

Disadvantages

“Define Input
Properties by Example
at the Command Line”

Note If you define
input properties
programmatically in the
MATLAB file, you

cannot use this method

* Easy to use

Does not alter original MATLAB
code

* Designed for prototyping a
function that has a few primary
inputs

* Must be specified at the
command line every time you
invoke (unless you use a script)

* Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

See Also

Method

Advantages

Disadvantages

“Define Input
Properties
Programmatically in the
MATLAB File”
(MATLAB Coder)

Integrated with MATLAB code; no
need to redefine properties each
time you invoke HDL Coder

Provides documentation of
property specifications in the
MATLAB code

Efficient for specifying memory-
intensive inputs such as large
structures

Uses complex syntax

HDL Coder project files do not
currently recognize properties
defined programmatically. If you
are using a project, you must
reenter the input types in the
project.

See Also

5-9

5 Code Generation

Basic HDL Code Generation with the Workflow Advisor

5-10

This example shows how to work with MATLAB® HDL Coder™ projects to generate HDL
from MATLAB designs.

Introduction

This example helps you familiarize yourself with the following aspects of HDL code
generation:

1 Generating HDL code from MATLAB design.

2 Generating a HDL test bench from a MATLAB test bench.

3 Verifying the generated HDL code using a HDL simulator.

4 Synthesizing the generated HDL code using a HDL synthesis tool.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter. This
example also shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc sfir';
testbench _name = 'mlhdlc sfir tb"';

1 MATLAB Design: mlhdlc sfir
2 MATLAB testbench: mlhdlc sfir tbh

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc sfir'];

% Create a temporary folder and copy the MATLAB files.
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc temp dir);

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos’,

'matlabl

matlab:edit('mlhdlc_sfir')
matlab:edit('mlhdlc_sfir_tb')

Basic HDL Code Generation with the Workflow Advisor

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc sfir tb

Create a New HDL Coder Project

To create a new project, enter the following command:
coder -hdlcoder -new mlhdlc sfir

Next, add the file 'mlhdlc sfirm' to the project as the MATLAB Function and
'mlhdlc_sfir th.m' as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete introduction to creating and populating HDL Coder projects.

Step 1: Generate Fixed-Point MATLAB Code

Right-click the 'Float-to-Fixed Workflow' step and choose the option 'Run this task' to run
all the steps to generate fixed-point MATLAB code.

Examine the generated fixed-point MATLAB code by clicking the links in the log window
to open the MATLAB code in the editor.

For more details on fixed-point conversion, refer to the Floating-Point to Fixed-Point
Conversion tutorial.

5-11

5 Code Generation

A\ Workflow Advisor - Untitledl.prj

E-{_] HDL Workflow Advisor t? r@n
,o Define Input Types |) g Propose fraction lengths YO
H oFed-P R - Function: = mihdlc_sfir - Iﬁ Propose word lengths.
iwed-Point “""‘3’5_"’“ Analyze L Default word length: |14 Advanced Validate Test Help
; o Select Code Generation Target - - Types Numerics +
’J HDL Code Generation DATA COLLECTIOM NAVIGATION TYPE PROPOSAL VERIFICATION HELP
-1 HDL Verification 19 & Copyright 2011-2015 The MathWorks, Inc. -
J Verify with HDL Test Bench 20
! 0 Verify with Cosimulation 21 2#codegen
~[E Verify with FPGA-in-the-Loop| 23 J|-) function [v out, delaved xout] = mlhdlc sfir(x in, h inl, h in2, h in3, h _ind)
23 % Symmetric FIR Filter
24
25 % declare and initialize the delay registers
26 persistent udl ud2 ud3 ud 7 ud8
27 if isempty (udl) -
28 udl = 0; ud2 = 0; ud3 = 0; ud4 = 0; udS = 0; udé = 0; ud7? = 0; udé = 0;
29 end
30 —
31 % access the previous wvalue of states/registers
[d 32]| a2 = vdl + ude; a2 = ud2 + uwdl:
- 33 a3 = ud3 + udé; a4 = ud4 + ud5;
34
35 % multiplier chain
36 | ml = h_inl * al; m2 = h_in2 * a2;
37 m3 = h in3 * a3; m4 = h in4 * a4: kv
Watiables | Function Replacements | Cutput
Variable Type Sim Min Sim Max Whol... Proposed Type Log Error (%)
= -
*_in dauble -1 1 Mo numerictype(l, 14, 13 v L
h_inl double -0.13 -0.13 Mo numerictype(l, 14, 15} v
h_in2 double -0.08 -0.08 Mo nurnerictype(l, 14, 16) v
h_in3 double 0.2 0.2 Mo nurnerictypedl, 14, 16) v
h_in4 double 0.41 0.41 Mo nurnerictypedl, 14, 15) v
=]
y_out double -1.22 122 Mo numerictype(l, 14, 1) v
delayed_xout double -1 1 Mo numerictype(l, 14, 12 v -

Step 2: Generate HDL Code

This step generates Verilog code from the generated fixed-point MATLAB design, and a
Verilog test bench from the MATLAB test bench wrapper.

To set code generation options and generate HDL code:

1 Click the 'Code Generation' step to view the HDL code generation options panel.

2
3

5-12

In the Target tab, choose 'Verilog' as the 'Language' option.
Select the 'Generate HDL' and 'Generate HDL test bench' options.

Basic HDL Code Generation with the Workflow Advisor

4 In the 'Optimizations' tab, choose '1' as the Input and Output pipeline length, and
enable the 'Distribute pipeline registers' option.

5 In the 'Coding style' tab, choose 'Include MATLAB source code as comments' and
'Generate report' to generate a code generation report with comments and
traceability links.

6 Click the 'Run' button to generate both the Verilog design and testbench with reports.

Examine the log window and click the links to explore the generated code and the
reports.

Step 3: Simulate the Generated Code

In the 'HDL Verification' step, select 'Verify with HDL Test Bench' substep and choose the
'Multi-file test bench' option in 'Test Bench Options' sub-tab. This option helps to generate
HDL test bench code and test bench data (stimulus and response) in separate files.

HDL Coder automates the process of generating a HDL test bench and running the
generated HDL test bench using the ModelSim® or ISIM™ simulator, and reports if the
generated HDL simulation matches the numerics and latency with respect to the fixed-
point MATLAB simulation.

Step 4: Synthesize the Generated Code

HDL Coder also creates a Xilinx® ISE™ or Altera® Quartus™ project with the selected
options and runs the selected logic synthesis and place-and-route steps for the generated
HDL code.

Examine the log window to view the results of synthesis steps.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.
mlhdlc_demo dir

mlhdlc_temp dir
clear mex;

[tempdir 'mlhdlc sfir'];

5-13

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

5 Code Generation

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

See Also

More About

. “HDL Workflow Advisor” on page 9-2

. “Verify with HDL Test Bench”

. “Automatic Verification of Generated HDL Code from MATLAB” (HDL Verifier)
. “FIL Simulation with HDL Workflow Advisor for MATLAB” (HDL Verifier)

5-14

HDL Code Generation from System Objects

HDL Code Generation from System Objects

This example shows how to generate HDL code from MATLAB® code that contains
System objects.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter and
uses the dsp.Delay System object to model state. This example also shows a MATLAB test
bench that exercises the filter.

design_name = 'mlhdlc sysobj ex';
testbench name = 'mlhdlc sysobj ex tb';

Let us take a look at the MATLAB design.

type(design _name);

©.000
“676"6°0°0°0°0°06°0°0 0600006000000 060000000060000000060600600°0000°0060000000600°00600°0000°00606°0°00

MATLAB design: Symmetric FIR Filter

Design pattern covered in this example:
Filter states modeled using DSP System object (dsp.Delay)
Filter coefficients passed in as parameters to the design

©.000
“676°6°0°0°0°0°060°0 0060000000000 06000000006000000006000600°0000°00600000°00006°00600°0000°00606°0°00

d° 0° o° o° o°

% Copyright 2011-2015 The MathWorks, Inc.

s#codegen
function [y out, delayed xout] = mlhdlc sysobj ex(x in, h inl, h in2, h in3, h in4)
% Symmetric FIR Filter

persistent hl h2 h3 h4 h5 h6 h7 h8;
if isempty(hl)

hl = dsp.Delay;
h2 = dsp.Delay;
h3 = dsp.Delay;
h4 = dsp.Delay;
h5 = dsp.Delay;
hé = dsp.Delay;
h7 = dsp.Delay;
h8 = dsp.Delay;

end

5-15

5 Code Generation

o®

o° O

o° +

o° —

o° -H

o° Y=

o°

o o

o° H

o L

o°

® O

o° <

o +

o°

~ o <

© o® O

.. c . 0
~ rm m am oam oam e oas ()] — o°
C o~~~ o~~~ —~ i KN () o°
- o000 o0aQo n o 1S o° O
[NM <N O~ + (o] © ® C
X ccocccoccoccocco ~oem es es S o~ O c o
sa s es s —NM < 0w S | © O

:::::::: 00 a0a M © O © + © Q ll < o
A ONM TN O 00 o~ OuWn =~ s > c O o +
cccccccc c c c c * ¥ ¥ ¥ N < O + A c ®°® 0
((((((((== S (3] °©
[eNel ol el o N o N o N o} + + + + —oNmMm< TN+ O o o° +
VOV UVOVLILVOYVOOY cccc + + U © 35 X + o°
ot ol ol ol ol ol ol = o000 e R - o | 0 o° m
nununnnnnon —NmMm< I I I =m VIl >T (0] o <T
c c c o o c o c £ E + o O + o°

1 | | T | | O | A | I 1| — == >N ~ X
nnun nnun I n - 3 O ©] o® <T

oo0ooo0caooaoQ Y- O T~ k] o ° =
A NM <N O~ N M< — N M < n O I [} c > o
c cccccc.c © © © © e E E E © @© d® > T () + o° o°

’

Copyright 2011-2015 The MathWorks, Inc.

X _in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).

clear mlhdlc_sysobj ex;

hl = -0.1339;

5-16

HDL Code Generation from System Objects

h2 = -0.0838;
h3 = 0.2026;
h4 = 0.4064;

len = length(x _in);

y out sysobj zeros(1,len);
x_out sysobj zeros(1l,len);
a = 10;

for ii=l:len

data = x_in(ii);

% call to the design 'sfir' that is targeted for hardware

[y out sysobj(ii), x out sysobj(ii)] = mlhdlc_sysobj ex(data, hl, h2, h3, h4);
end

figure('Name', [mfilename, ' plot'l);

subplot(2,1,1);

plot(l:len,x _in); title('Input signal with noise');
subplot(2,1,2);

plot(1l:len,y out sysobj); title('Filtered output signal');

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo dir
mlhdlc_temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc sysobj intro'];

% Create a temporary folder and copy the MATLAB files.
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc_demo dir, [design name,'.m*']), mlhdlc_temp dir);
copyfile(fullfile(mlhdlc_demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc _sysobj ex tb

5-17

5 Code Generation

5-18

Input signal with noise

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc sysobj prj

T rlﬂhur TR B LT
05 |H 1
|
,D - <
0 500 1000 1500 2000 2500
Filtered output signal
1 - -
05F 1
or 1]
=1 F -
0 500 1000 1500 2000 2500

Next, add the file 'mlhdlc_sysobj ex.m' to the project as the MATLAB Function and

‘'mlhdlc_sysobj ex tb.m'as the MATLAB Test Bench.

You can refer to the Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

HDL Code Generation from System Objects

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation'
step. Choose the option 'Run to selected task' to run all the steps from the beginning
through HDL code generation.

Examine the generated HDL code by clicking the links in the log window.
Supported System objects

Refer to the documentation for a list of System objects supported for HDL code
generation.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc sysobj intro'];

5-19

matlab:helpview(fullfile(docroot,'hdlcoder','helptargets.map'),'hdlcoder_supported_system_objects');
matlab:helpview(fullfile(docroot,'hdlcoder','helptargets.map'),'hdlcoder_supported_system_objects');

5 Code Generation

Code Generation Reports

5-20

In this section...

“Report Generation” on page 5-20
“Report Location” on page 5-21
“Errors and Warnings” on page 5-21
“Files and Functions” on page 5-21
“MATLAB Source” on page 5-22
“MATLAB Variables” on page 5-23
“Additional Reports” on page 5-24
“Report Limitations” on page 5-24

HDL Coder produces a code generation report that helps you to:

* Debug code generation issues and verify that your MATLAB code is suitable for code
generation.

* View generated HDL code.

* See how the code generator determines and propagates type information for variables
and expressions in your MATLAB code.

* Access additional reports.

Report Generation

When you enable report generation, the code generator produces a code generation
report. To control generation and opening of a code generation report, use app settings,
codegen options, or configuration object properties.

In the HDL Coder app:

1 Open the HDL Coder Workflow Advisor.

2 Inthe HDL Code Generation step options, on the Coding Style tab, under
Generated Code Comments, select the Generate report check box.

At the command line, use codegen options:

* To generate a report, use the - report option.

Code Generation Reports

* To generate and open a report, use the - launchreport option.
Alternatively, use configuration object properties:

* To generate a report, set GenerateReport to true.
» Ifyou want codegen to open the report for you, set LaunchReport to true.

Report Location

The code generation report is named report.mldatx. It is located in the html subfolder
of the code generation output folder. If you have MATLAB R2018a or later, you can open
the report.mldatx file by double-clicking it.

Errors and Warnings

View code generation error, warning, and information messages on the All Messages
tab. To highlight the source code for an error or warning, click the message. It is a best
practice to address the first message because subsequent errors and warnings can be
related to the first message.

Files and Functions

The report lists MATLAB source functions and generated files. In the MATLAB Source
pane, the Function List view organizes functions according to the containing file. To
visualize functions according to the call structure, use the Call Tree view.

To view a function in the code pane of the report, click the function in the list. Clicking a
function opens the file that contains the function. To edit the selected file in the MATLAB
Editor, click Edit in MATLAB or click a line number in the code pane.

Specialized Functions or Classes
When a function is called with different types of inputs or a class uses different types for

its properties, the code generator produces specializations. In the MATLAB Source
pane, numbered functions (or classes) indicate specializations. For example:

fx fen = 1
fxfen =2

5-21

5 Code Generation

5-22

MATLAB Source

To view a MATLAB function in the code pane, click the function in the MATLAB Source
pane. To see information about the type of a variable or expression, pause over the
variable or expression.

In the code pane, syntax highlighting of MATLAB source code helps you to identify
MATLAB syntax elements. Syntax highlighting also helps you to identify certain code
generation attributes such as whether a function is extrinsic or whether an argument is
constant.

Extrinsic Functions

In the MATLAB code, the report identifies an extrinsic function with purple text. The
information window indicates that the function is extrinsic.

callMyExtrinsic.m

1 function z = callMyExtrinsic{a,b)

2 X#codegen

3 coder.extrinsic('myExtr oortrinsic(a,b)
4 7 = 8;

5 z - (SR <

& disp(z); Class: mxArray
7 end

@) myExtrinsic isan extrinsic function

Constant Arguments

In the MATLAB code, orange text indicates a compile-time constant argument to an entry-
point function or a specialized function. The information window includes the constant
value.

&,
myadd.m a
1 function c 1 size 1% 1
2E< I £ Class double
Complex: Mo
Value 2

Code Generation Reports

Knowing the value of the constant arguments helps you to understand generated function
signatures. It also helps you to see when code generation created function specializations
for different constant argument values.

To export the value to a variable in the workspace, click s,

MATLAB Variables

The Variables tab provides information about the variables for the selected MATLAB
function. To select a function, click the function in the MATLAB Source pane.

The variables table shows:

* Class, size, and complexity
» Properties of fixed-point types

This information helps you to debug errors, such as type mismatch errors, and to
understand type propagation.

Visual Indicators on the Variables Tab

This table describes symbols, badges, and other indicators in the variables table.

Column in the Variables |Indicator Description
Table
Name expander Variable has elements or

properties that you can see
by clicking the expander.

Name {:} Heterogeneous cell array
(all elements have the same
properties)

Name {n} nth element of a

heterogeneous cell array

5-23

5 Code Generation

Column in the Variables |Indicator Description
Table
Class V >n v is reused with a different

class, size, and complexity.
The number n identifies
each unique reuse (a reuse
with a unique set of
properties). When you pause
over a renamed variable, the
report highlights only the
instances of this variable
that share the class, size,
and complexity.

Class complex prefix Complex number
Class Fixed-point type

To see the fixed-point
properties, click the badge.

Additional Reports

The Summary tab can have links to these additional reports:

* Conformance report
* Resource report
+ “HDL Coding Standard Report” on page 26-2

Report Limitations

* The entry-point summary shows individual elements of varagin and vargout, but the
variables table does not show them.

* The report does not show full information for unrolled loops. It displays data types of
one arbitrary iteration.

* The report does not show information about dead code.

5-24

See Also

See Also

More About

. “Basic HDL Code Generation with the Workflow Advisor” on page 5-10

. “Generate HDL Code from MATLAB Code Using the Command Line Interface” on
page 5-40

5-25

5 Code Generation

Generate Instantiable Code for Functions

5-26

In this section...

“How to Generate Instantiable Code for Functions” on page 5-26
“Generate Code Inline for Specific Functions” on page 5-26

“Limitations for Instantiable Code Generation for Functions” on page 5-26

You can use the Generate instantiable code for functions option to generate a VHDL
entity or Verilog module for each function. The software generates code for each entity
or module in a separate file.

How to Generate Instantiable Code for Functions

To enable instantiable code generation for functions in the UL:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 Inthe Advanced tab, select Generate instantiable code for functions.

To enable instantiable code generation for functions programmatically, in your
coder.Hd1Config object, set the InstantiateFunctions property to true. For
example, to create a coder.Hd1Config object and enable instantiable code generation
for functions:

hdlcfg = coder.config('hdl');
hdlcfg.InstantiateFunctions = true;

Generate Code Inline for Specific Functions
If you want to generate instantiable code for some functions but not others, enable the

option to generate instantiable code for functions, and use coder.inline. See
coder.inline for details.

Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

* Function calls are within conditional code or for loops.

Generate Instantiable Code for Functions

* Any function is called with a nonconstant struct input.
* The function has state, such as a persistent variable, and is called multiple times.
* There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions , UseMatrixTypesInHDL has no effect.

5-27

5 Code Generation

Integrate Custom HDL Code Into MATLAB Design

5-28

hdl.BlackBox provides a way to include custom HDL code, such as legacy or
handwritten HDL code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you
specify a port interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the System
object. During code generation, instead of generating code for the simulation behavior,
the coder instantiates a module with the port interface you specify in the System object.

To use the generated HDL code in a larger system, you include the custom HDL source
files with the rest of the generated code.

In this section...

“Define the hdl.BlackBox System object” on page 5-28

“Use System object In MATLAB Design Function” on page 5-30
“Generate HDL Code” on page 5-30

“Limitations for hdl.BlackBox” on page 5-33

Define the hdl.BlackBox System object

Create a user-defined System object that inherits from hdl.BlackBox.

Configure the black box interface to match the port interface for your custom HDL
code by setting hdl.BlackBox properties in the System object.

3 Define the step method such that its simulation behavior matches the custom HDL
code.

Alternatively, the System object you define can inherit from both hd1l.BlackBox and
the matlab.system.mixin.Nondirect class, and you can define output and
update methods to match the custom HDL code simulation behavior.

Example Code

For example, the following code defines a System object, CounterBbox, that inherits
from hdl.BlackBox and represents custom HDL code for a counter that increments until
it reaches a threshold. The CounterBbox reset and step methods model the custom
HDL code behavior.

Integrate Custom HDL Code Into MATLAB Design

classdef CounterBbox < hdl.BlackBox % derive from hdl.BlackBox class

end

]

%Counter: Count up to a threshold.

This is an example of a discrete-time System object with state
variables.

o® o° o o°

properties (Nontunable)
Threshold =1
end

properties (DiscreteState)
% Define discrete-time states.
Count

end

methods
function obj = CounterBbox(varargin)
% Support name-value pair arguments
setProperties(obj,nargin,varargin{:});
obj .NumInputs = 1; % define number of inputs
obj.NumOutputs = 1; % define number of inputs
end
end

methods (Access=protected)
% Define simulation behavior.
% For code generation, the coder uses your custom HDL code instead.
function resetImpl(obj)
% Specify initial values for DiscreteState properties
obj.Count = 0;
end

function myout = stepImpl(obj, myin)
% Implement algorithm. Calculate y as a function of
% input u and state.
if (myin > obj.Threshold)

obj.Count = obj.Count + 1;

end
myout = obj.Count;

end

end

5-29

5 Code Generation

5-30

Use System object In MATLAB Design Function

After you define your System object, use it in the MATLAB design function by creating an
instance and calling its step method.

To generate code, you also need to create a test bench function that exercises the top-
level design function.

Example Code

The following example code shows a top-level design function that creates an instance of
the CounterBbox and calls its step method.

function [yl, y2] = topLevelDesign(u)

persistent mybboxObj myramObj

if isempty(mybbox0bj)
mybbox0Obj = CounterBbox; % instantiate the black box
myramObj = hdl.RAM('RAMType', 'Dual port');

end

yl = step(mybboxObj, u); % call the system object step method
[~, y2] = step(myramObj, uint8(10), uint8(0), true, uint8(20));

The following example code shows a test bench function for the topLevelDesign
function.

clear topLevelDesign
yl = zeros(1,200);
y2 = zeros(1,200);
for 1i=1:200
[yl(ii), y2(ii)] = topLevelDesign(ii);
end
plot([1:200], y2)

Generate HDL Code

Generate HDL code using the design function and test bench code.

When you use the generated HDL code, include your custom HDL code with the
generated HDL files.

Integrate Custom HDL Code Into MATLAB Design

Example Code

In the following generated VHDL code for the CounterBbox example, you can see that
the CounterBbox instance in the MATLAB code maps to an HDL component definition
and instantiation, but HDL code is not generated for the step method.

LIBRARY IEEE;
USE IEEE.std logic 1164.ALL;
USE IEEE.numeric std.ALL;

ENTITY foo IS

PORT(clk : IN std logic;
reset : IN std logic;
clk enable : IN std logic;
u : IN std logic vector(7 DOWNTO 0); -- uint8
ce out : OUT std logic;
yl : ouT real; -- double
y2 : OUT std logic vector(7 DOWNTO 0) -- uint8
);

END foo;

ARCHITECTURE rtl OF foo IS

-- Component Declarations
COMPONENT CounterBbox

PORT(clk : IN std logic;
clk _enable : IN std logic;
reset : IN std logic;
myin : IN std logic vector(7 DOWNTO @); -- uint8
myout : ouT real -- double

);
END COMPONENT;

COMPONENT DualPortRAM Inst0O

PORT(clk : IN std logic;
enb : IN std logic;
wr_din : IN std logic vector(7 DOWNTO 0); -- uint8
wr_addr : IN std logic _vector(7 DOWNTO 0); -- uint8
wr_en : IN std logic;
rd _addr : IN std logic _vector(7 DOWNTO 0); -- uint8
wr_dout : ouT std logic _vector(7 DOWNTO 0); -- uint8
rd dout : OUT std logic_vector(7 DOWNTO 0) -- uint8

);

5-31

5 Code Generation

END COMPONENT;

-- Component Configuration Statements
FOR ALL : CounterBbox
USE ENTITY work.CounterBbox(rtl);

FOR ALL : DualPortRAM Inst@
USE ENTITY work.DualPortRAM InstO(rtl);

-- Signals

SIGNAL enb : std logic;

SIGNAL varargout 1 : real := 0.0; -- double

SIGNAL tmp : unsigned(7 DOWNTO 0); ~-- uint8

SIGNAL tmp 1 : unsigned(7 DOWNTO 0); -- uint8

SIGNAL tmp 2 : std logic;

SIGNAL tmp 3 : unsigned(7 DOWNTO 0); ~-- uint8

SIGNAL varargout 1 1 : std logic vector(7 DOWNTO 0); -- ufix8

SIGNAL varargout 2 : std logic vector(7 DOWNTO 0); -- ufix8
BEGIN

u_CounterBbox : CounterBbox
PORT MAP(clk => clk,
clk_enable => enb,
reset => reset,
myin => u, -- uint8
myout => varargout 1 -- double
);

u DualPortRAM Inst@® : DualPortRAM Inst@
PORT MAP(clk => clk,
enb => enb,

wr_din => std logic vector(tmp), -- uint8
wr_addr => std logic vector(tmp 1), -- uint8
wr_en => tmp 2,

rd addr => std logic vector(tmp 3), -- uint8
wr_dout => varargout 1 1, -- uint8

rd dout => varargout 2 -- uint8

)i
enb <= clk enable;
yl <= varargout 1;

-ty2 =g

5-32

See Also

tmp <= to _unsigned(2#00001010#, 8);
tmp 1 <= to unsigned(2#00000000#, 8);
tmp 2 <= '1";

tmp 3 <= to unsigned(2#00010100#, 8);
ce out <= clk enable;

y2 <= varargout 2;

END rtl;

Limitations for hdl.BlackBox

You cannot use hdl.BlackBox to assign values to a VHDL generic or Verilog
parameter in your custom HDL code.

See Also
hdl.BlackBox

Related Examples
. “Generate a Board-Independent IP Core from MATLAB” on page 5-56

5-33

5 Code Generation

Enable MATLAB Function Block Generation

5-34

In this section...

“Requirements for MATLAB Function Block Generation” on page 5-34
“Enable MATLAB Function Block Generation” on page 5-34
“Restrictions for MATLAB Function Block Generation” on page 5-34
“Results of MATLAB Function Block Generation” on page 5-34

Requirements for MATLAB Function Block Generation

During HDL code generation, your MATLAB algorithm must go through the floating-point
to fixed-point conversion process, even if it is already a fixed-point algorithm.

Enable MATLAB Function Block Generation

Using the GUI
To enable MATLAB Function block generation using the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.
2 Inthe Advanced tab, select the Generate MATLAB Function Black Box option.

Using the Command Line

To enable MATLAB Function block generation, at the command line, enter:

hdlcfg = coder.config('hdl');
hdlcfg.GenerateMLFcnBlock = true;

Restrictions for MATLAB Function Block Generation

The top-level MATLAB design function cannot have input or output arguments with the
struct data type.

Results of MATLAB Function Block Generation

After you generate HDL code, an untitled model opens containing a MATLAB Function
block.

Enable MATLAB Function Block Generation

You can use the MATLAB Function block as part of a larger model in Simulink for
simulation and further HDL code generation.

To learn more about generating a MATLAB Function block from a MATLAB algorithm, see
“System Design with HDL Code Generation from MATLAB and Simulink” on page 5-36.

5-35

5 Code Generation

System Design with HDL Code Generation from MATLAB
and Simulink

5-36

This example shows how to generate a MATLAB Function block from a MATLAB® design
for system simulation, code generation, and FPGA programming in Simulink®.

Introduction

HDL Coder can generate HDL code from both MATLAB® and Simulink®. The coder can
also generate a Simulink® component, the MATLAB Function block, from your MATLAB
code.

This capability enables you to:

Design an algorithm in MATLAB;

Generate a MATLAB Function block from your MATLAB design;
Use the MATLAB component in a Simulink model of the system;
Simulate and optimize the system model;

Generate HDL code; and

Program an FPGA with the entire system design.

S U A W N M

In this example, you will generate a MATLAB Function block from MATLAB code that
implements a FIR filter.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a
MATLAB testbench that exercises the filter.

design name = 'mlhdlc fir';
testbench name = 'mlhdlc fir tb';

1 Design: mlhdlc fir
2 Test Bench: mlhdlc fir th

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc fir'];

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

matlab:edit('mlhdlc_fir')
matlab:edit('mlhdlc_fir_tb')

System Design with HDL Code Generation from MATLAB and Simulink

% Create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Simulate the Design

To simulate the design with the test bench prior to code generation to make sure there
are no runtime errors, enter the following command:

mlhdlc fir tb

Create a New Project

To create a new HDL Coder project, enter the following command:
coder -hdlcoder -new fir project

Next, add the file 'mlhdlc_firm' to the project as the MATLAB Function and
‘mlhdlc fir th.m' as the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.
Enable the MATLAB Function Block Option

To generate a MATLAB Function block from a MATLAB HDL design, you must have a
Simulink license. If the following command returns '1', Simulink is available:

license('test', 'Simulink"')

In the HDL Workflow Advisor Advanced tab, enable the Generate MATLAB Function Block
option.

5-37

5 Code Generation

4\ HOL Code Generation

=] MATLAR HDL Coder Workflow
L:JQ Float-to-Fixed Workflow
-a Werify Flozting-Point Design
0 Propose Fixed-Point Types
o Generate Fixed-Paoint Code
; o Wetify Fixed-Paint Design
BJ MATLAR to HDL Workflou

Code Generation

| Simulation and Yerification
-1 Synthesis and Analysis
Create Project

Run Logic Synthesis
Run Place and Route

oo e

Generate synthesizable HDL code from the fixed-point MATLABE code.

|Target|Codmg Style | Clacks & Ports | Test Bench | Optimizations | Advanced | Scrint Options

Advanced Coding Options
RAM architecture: | RAM with clock enable =)

[7] Generate instantiable cade for functions

Simulink Integration
Generate MATLAR Function Block (Simulink license is required)

[7] Generate Xilire Systern Generator Black Box (Sirmulink and Xiliro: Systern Generator for DSP licenses are required)

o (o

Warning: BAM mapping not performed for wvariable, 'tap delay', because it does not meet the
> In mihAhdlstageh2012_04_18_hlSw09s46 jobl3286_failimatlabh\toolboxhcoderhcoder'privatelemlck

Run Floating-Point to Fixed-Point Conversion and Generate Code

5-38

To generate a MATLAB Function block, you must also convert your design from floating-
point to fixed-point.

Right-click the 'Code Generation' step and choose the option 'Run to selected task' to run
all the steps from the beginning through HDL code generation.

Examine the Generated MATLAB Function Block

An untitled model opens after HDL code generation. It has a MATLAB Function block
containing the fixed-point MATLAB code from your MATLAB HDL design. HDL Coder
automatically applies settings to the model and MATLAB Function block so that they can
simulate in Simulink and generate HDL code.

To generate HDL code from the MATLAB Function block, enter the following command:

makehdl('untitled');

System Design with HDL Code Generation from MATLAB and Simulink

"biuntitled* - == 2 [
File Edit View Display Diagram Simulation Analysis Code Tools Help
- - +* |10 - vI
Model Browser == | untitled
untitled ® untitled v
3
[~
@—P indatabuf -‘l outdatabuf 4’@
_ mlhdlc_fir_FixPt
in - out1
mihdic_fir_FixPt_slcfg
«
Ready 235% FixedStepDiscrete

You can rename and save the new block to use in a larger Simulink design.

Clean Up the Generated Files

You can run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',
[tempdir 'mlhdlc fir'];

clear mex;
cd (mlhdlc_demo dir);
rmdir (mlhdlc_temp dir, 's');

5-39

'matlabl

5 Code Generation

Generate HDL Code from MATLAB Code Using the
Command Line Interface

5-40

This example shows how to use the HDL Coder™ command line interface to generate
HDL code from MATLAB® code, including floating-point to fixed-point conversion and
FPGA programming file generation.

Overview
HDL code generation with the command line interface has the following basic steps:

Create a 'fixpt' coder config object. (Optional)
Create an 'hdl' coder config object.
Set config object parameters. (Optional)

A W N =

Run the codegen command to generate code.

The HDL Coder™ command line interface can use two coder config objects with the
codegen command. The optional 'fixpt' coder config object configures the floating-point to
fixed-point conversion of your MATLAB® code. The 'hdl' coder config object configures
HDL code generation and FPGA programming options.

In this example, we explore different ways you can configure your floating-point to fixed-
point conversion and code generation.

The example code implements a discrete-time integrator and its test bench.
Copy the Design and Test Bench Files Into a Temporary Folder

Execute the following code to copy the design and test bench files into a temporary
folder:

close all;
design name = 'mlhdlc dti';
testbench name = 'mlhdlc dti tb';

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc dti'];

cd(tempdir);
[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

Generate HDL Code from MATLAB Code Using the Command Line Interface

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Basic Code Generation With Floating-Point to Fixed-Point Conversion

You can generate HDL code and convert the design from floating-point to fixed-point
using the default settings.

You need only your design name, 'mlhdlc_dti', and test bench name, 'mlhdlc_dti th":

close all;

% Create a 'fixpt' config with default settings
fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'mlhdlc dti tb';

% Create an 'hdl' config with default settings
hdlcfg = coder.config('hdl'); S#ok<NASGU>

After creating 'fixpt' and 'hdl' config objects set up, run the following codegen command
to perform floating-point to fixed-point conversion, generate HDL code.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc dti

Alternatively, if your design already uses fixed-point types and functions, you can skip
fixed-point conversion:

hdlcfg = coder.config('hdl'); % Create an 'hdl' config with default settings

hdlcfg.TestBenchName = 'mlhdlc dti tb';
codegen -config hdlcfg mlhdlc dti

The rest of this example describes how to configure code generation using the 'hdl' and
'fixpt' objects.

Create a Floating-Point to Fixed-Point Conversion Config Object

To perform floating-point to fixed-point conversion, you need a 'fixpt' config object.
Create a 'fixpt' config object and specify your test bench name:

close all;

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'mlhdlc dti tb';

5-41

5 Code Generation

5-42

Set Fixed-Point Conversion Type Proposal Options

The coder can propose fixed-point types based on your choice of either word length or
fraction length. These two options are mutually exclusive.

Base the proposed types on a word length of 24:

fixptcfg.DefaultWordLength = 24;
fixptcfg.ProposeFractionLengthsForDefaultWordLength = true;

Alternatively, you can base the proposed fixed-point types on fraction length. The
following code configures the coder to propose types based on a fraction length of 10:

fixptcfg.DefaultFractionLength = 10;
fixptcfg.ProposeWordLengthsForDefaultFractionLength = true;

Set the Safety Margin

The coder increases the simulation data range on which it bases its fixed-point type
proposal by the safety margin percentage. For example, the default safety margin is 4,
which increases the simulation data range used for fixed-point type proposal by 4%.

Set the SafetyMargin to 10%:
fixptcfg.SafetyMargin = 10;
Enable Data Logging

The coder runs the test bench with the design before and after floating-point to fixed-
point conversion. You can enable simulation data logging to plot the data differences
introduced by fixed-point conversion.

Enable data logging in the 'fixpt' config object:
fixptcfg.LogIOForComparisonPlotting = true;
View the Numeric Type Proposal Report

Configure the coder to launch the type proposal report after the coder has proposed
fixed-point types:

fixptcfg.LaunchNumericTypesReport = true;

Generate HDL Code from MATLAB Code Using the Command Line Interface

Specify a Type For a Design Variable

If you want to specify the fixed-point data type for a variable in your design, you can
create a type specification, set its fields, and associate it with the variable.

The type specification has the following fields:

* IsInteger: Can be true or false

* ProposedType: A type string, like 'ufix15' or 'int32'.

* RoundingMethod: Can be 'ceil’, 'convergent’, 'fix', 'floor', 'nearest’, or 'round'.
* OverflowAction: Can be 'saturate' or 'wrap'.

Create a type specification and associate it with the 'delayed xout' variable:

Create a type specification object.

typeSpec = coder.FixPtTypeSpec;

Set fields in the typeSpec object.

typeSpec.ProposedType = 'ufix15';
typeSpec.RoundingMethod = 'nearest';
typeSpec.OverflowAction = 'saturate';

Associate the type specification with the variable, 'yt'.
fixptcfg.addTypeSpecification('mlhdlc dti', 'yt', typeSpec)

Create an HDL Code Generation Config Object

To generate code, you must create an 'hdl' config object and set your test bench name:

hdlcfg = coder.config('hdl"');
hdlcfg.TestBenchName = 'mlhdlc dti tb';

Set the Target Language

You can generate either VHDL or Verilog code. The coder generates VHDL code by
default.

To generate Verilog code:

hdlcfg.TargetLanguage = 'Verilog';

5-43

5 Code Generation

5-44

Generate HDL Test Bench Code

Generate an HDL test bench from your MATLAB® test bench:
hdlcfg.GenerateHDLTestBench = true;

Simulate the Generated HDL Code Using an HDL Simulator

If you want to simulate your generated HDL code using an HDL simulator, you must also
generate the HDL test bench.

Enable HDL simulation and use the ModelSim simulator:
hdlcfg.SimulateGeneratedCode = true;

hdlcfg.SimulationTool = 'ModelSim'; % or 'ISIM'

Generate an FPGA Programming File

You can generate an FPGA programming file if you have a synthesis tool set up.

Enable synthesis, specify a synthesis tool, and specify an FPGA:

% Enable Synthesis.
hdlcfg.SynthesizeGeneratedCode = true;

% Configure Synthesis tool.

hdlcfg.SynthesisTool = 'Xilinx ISE'; % or 'Altera Quartus II';
hdlcfg.SynthesisToolChipFamily 'Virtex7';
hdlcfg.SynthesisToolDeviceName 'xc7vh580t"';
hdlcfg.SynthesisToolPackageName = 'hcgll55';
hdlcfg.SynthesisToolSpeedValue = '-2G';

Run Code Generation

Now that you have your 'fixpt' and 'hdl' config objects set up, run the codegen command
to perform floating-point to fixed-point conversion, generate HDL code, and generate an
FPGA programming file:

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc dti

Specify the Clock Enable Rate

Specify the Clock Enable Rate

In this section...
“Why Specify the Clock Enable Rate?” on page 5-45
“How to Specify the Clock Enable Rate” on page 5-45

Why Specify the Clock Enable Rate?

When HDL Coder performs area optimizations, it might upsample parts of your design
(DUT), and thereby introduce an increase in your required DUT clock frequency.

If the coder upsamples your design, it generates a message indicating the ratio between
the new clock frequency and your original clock frequency. For example, the following
message indicates that your design’s new required clock frequency is 4 times higher than
the original frequency:

The design requires 4 times faster clock with respect to the base rate =1

This frequency increase introduces a rate mismatch between your input clock enable and
output clock enable, because the output clock enable runs at the slower original clock
frequency.

With the Drive clock enable at option, you can choose whether to drive the input clock
enable at the faster rate (DUT base rate) or at a rate that is less than or equal to the
original clock enable rate (Input data rate).

How to Specify the Clock Enable Rate

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation. Click the Clocks & Ports tab.

2 For the Drive clock enable at option, select Input data rate or DUT base rate.

5-45

5 Code Generation

5-46

Drive clock enable at Option

Clock Enable Behavior

Input data rate (default)

Each assertion of the input clock
enable produces an output clock enable
assertion.

You can assert the input clock enable at
a maximum rate of once every N
clocks. N = the upsampled clock rate /
original clock rate.

For example, if you see the message,
“The design requires 4 times
faster clock with respect to
the base rate = 17, your maximum
input clock enable rate is once every 4
clocks.

DUT base rate

Input clock enable rate does not match
the output clock enable rate. You must
assert the input clock enable with your
input data N times to get 1 output
clock enable assertion. N = the
upsampled clock rate / original clock
rate.

For example, if you see the message,
“The design requires 4 times
faster clock with respect to
the base rate = 1”, you must
assert the input clock enable 4 times to
get 1 output clock enable assertion.

Specify Test Bench Clock Enable Toggle Rate

Specify Test Bench Clock Enable Toggle Rate

In this section...
“When to Specify Test Bench Clock Enable Toggle Rate” on page 5-47
“How to Specify Test Bench Clock Enable Toggle Rate” on page 5-47

When to Specify Test Bench Clock Enable Toggle Rate

When you want the test bench to drive your input data at a slower rate than the maximum
input clock enable rate, specify the test bench clock enable toggle rate.

This specification can help you to achieve better test coverage, and to simulate the real
world input data rate.

Note The maximum input clock enable rate is once every N clock cycles. N = the
upsampled clock rate / original clock rate. Refer to the clock enable behavior for Input
data rate, in “Specify the Clock Enable Rate” on page 5-45.

How to Specify Test Bench Clock Enable Toggle Rate

To set your test bench clock enable toggle rate:
1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation.

2 In the Clocks & Ports tab, for the Drive clock enable at option, select Input data
rate.

3 In the Test Bench tab, for Input data interval, enter 0 or an integer greater than
the maximum input clock enable interval.

Input data interval, | Test Bench Clock Enable Behavior

I = 0 (default) Asserts at the maximum input clock
enable rate, or once every N cycles. N
= the upsampled clock rate / original
clock rate.

I<N Not valid; generates an error.

5-47

5 Code Generation

Input data interval, | Test Bench Clock Enable Behavior
I=N Same as I = 0.
I>N Asserts every I clock cycles.

For example, this timing diagram shows clock enable behavior with Input data interval
= 0. Here, the maximum input clock enable rate is once every 2 cycles.

The following timing diagram shows the same test bench and DUT with Input data
interval = 3.

Additional Data Intenval

5-48

Generate an HDL Coding Standard Report from MATLAB

Generate an HDL Coding Standard Report from MATLAB

In this section...

“Using the HDL Workflow Advisor” on page 5-49
“Using the Command Line” on page 5-51

You can generate an HDL coding standard report that shows how well your generated

code follows industry standards. You can optionally customize the coding standard report
and the coding standard rules.

Using the HDL Workflow Advisor

To generate an HDL coding standard report using the HDL Workflow Advisor:

1 Inthe HDL Code Generation task, select the Coding Standards tab.
2 For HDL coding standard, select Industry.

5-49

5 Code Generation

|Target| Coding 5ty|e| Coding Standards | Clocks & Ports | Optimizations | Advanced | Script Options

Choose coding standard
HOL coding standard: :Industrj,f v:

Report options

[] Do not show passing rules in coding standard report
Basic coding rules

Check for duplicate names

Check for HDL keywords in design names

Check module, instance, entity name length
Minirnurm: 25
Mazximurm: 325
Check signal, port, parameter name length

Minirum: 2

¥

Maximum: 40

RTL description rules

[] Check for clock enable signals

[] Check for reset signals

Check for asynchronous reset signals

[] Minimize use of variables

Check for initial staternents that set RAM initial values

Check number of conditicnal regions
Length: 1
5-50 Check if-else statement chain length

Length: 7

=1 o~ e o o .- n .

Generate an HDL Coding Standard Report from MATLAB

3 Optionally, using the other options in the Coding Standards tab, customize the
coding standard rules.

4 Click Run to generate code.

After you generate code, the message window shows a link to the HTML compliance
report.

Using the Command Line

To generate an HDL coding standard report using the command line interface, set the
HDLCodingStandard property to Industry in the coder.Hd1Config object.

For example, to generate HDL code and an HDL coding standard report for a design,
mlhdlc_sfir, with a testbench, mlhdlc_sfir tb, enter the following commands:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc sfir tb';
hdlcfg.HDLCodingStandard="Industry';
codegen -config hdlcfg mlhdlc sfir

Generating Resource Utilization Report resource report.html

Generating default Industry script file mlhdlc_sfir mlhdlc_sfir default.prj
Industry Compliance report with 0 errors, 8 warnings, 4 messages.

Generating Industry Compliance Report mlhdlc_sfir Industry report.html

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks by
specifying an HDL coding standard customization object. For example, suppose you have
a design, mlthdlc_sfir, and testbench, mlhdlc_sfir tb. You can create an HDL
coding standard customization object, cso, set the maximum if-else statement chain
length to 5 by using the IfElseChain property, and generate code:

hdlcfg = coder.config('hdl');
hdlcfg.TestBenchName = 'mlhdlc sfir tb';
hdlcfg.HDLCodingStandard="Industry';

cso = hdlcoder.CodingStandard('Industry');
cso.IfElseChain.length = 5;
hdlcfg.HDLCodingStandardCustomizations = cso;
codegen -config hdlcfg mlhdlc sfir

5-51

5 Code Generation

See Also

Properties
HDL Coding Standard Customization

More About

. “HDL Coding Standard Report” on page 26-2

. “Basic Coding Practices” on page 26-10

. “RTL Description Techniques” on page 26-25

. “RTL Design Methodology Guidelines” on page 26-64

5-52

Generate an HDL Lint Tool Script

Generate an HDL Lint Tool Script

You can generate a lint tool script to use with a third-party lint tool to check your
generated HDL code.

HDL Coder can generate Tcl scripts for the following lint tools:

* Ascent Lint

* HDL Designer

* Leda

* SpyGlass

* Custom

If you specify one of the supported third-party lint tools, you can either generate a default
tool-specific script, or customize the script by specifying the initialization, command, and

termination names as a character vector. If you want to generate a script for a custom lint
tool, you must specify the initialization, command, and termination names.

HDL Coder writes the initialization, command, and termination names to a Tcl script that
you can use to run the third-party tool.

How To Generate an HDL Lint Tool Script
Using the HDL Workflow Advisor

In the HDL Workflow Advisor, select the HDL Code Generation task.
In the Script Options tab, select Lint.

For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or
Custom.

4 Optionally, enter text to customize the Lint script initialization, Lint script
command, and Lint script termination fields. For a custom tool, you must specify
these fields.

After you generate code, the command window shows a link to the lint tool script.

5-53

5 Code Generation

5-54

Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool
property to AscentLint, HDLDesigner, Leda, SpyGlass or Custom in your
coder.Hd1Config object.

To disable HDL lint tool script generation, set the HDLLintTool property to None.

For example, to generate a default SpyGlass lint script using a coder.Hd1Config object,
hdlcfg, enter:

hdlcfg.HDLLintTool = 'SpyGlass';

After you generate code, the command window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and termination
strings, use the HDLLintTool, HDLLintInit, HDLLintCmd, and HDLLintTerm
properties.

For example, you can use the following command to generate a custom Leda lint script for
a DUT subsystem, sfir fixed\symmetric fir, with custom initialization, termination,
and command strings:

hdlcfg.HDLLintTool 'Leda’;
hdlcfg.HDLLintInit 'myInitialization’;
hdlcfg.HDLLintCmd = 'myCommand S%s';
hdlcfg.HDLLintTerm = 'myTermination';

After you generate code, the command window shows a link to the lint tool script.
Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a
placeholder for the HDL file name in the generated Tcl script.

For Lint script command or HDLLintCmd, specify the lint command in the following
format:

custom_lint tool command -optionl -option2 %s

For example, to set the HDLLintCmd for a coder.Hd1Config object, hdlcfg, where the
lint command is custom lint tool command -optionl -option2, enter:

Generate an HDL Lint Tool Script

hdlcfg.HDLLintCmd = 'custom lint tool command -optionl -option2 %s';

3-35

5 Code Generation

Generate a Board-Independent IP Core from MATLAB

5-56

In this section...

“Generate a Board-Independent IP Core” on page 5-56
“Requirements and Limitations for IP Core Generation” on page 5-58

Generate a Board-Independent IP Core

To generate a board-independent IP core to use in an embedded system integration
environment, such as Altera® Qsys, Xilinx® EDK, or Xilinx IP Integrator:

1 Create an HDL Coder project containing your MATLAB design and test bench, or
open an existing project.
2 In the HDL Workflow Advisor, define input types and perform fixed-point conversion.

To learn how to convert your design to fixed-point, see “HDL Code Generation and
FPGA Synthesis from a MATLAB Algorithm”.

3 In the HDL Workflow Advisor, in the Select Code Generation Target task:

* Workflow: Select IP Core Generation.
* Platform: Select Generic Xilinx Platformor Generic Altera Platform.

Depending on your selection, the coder automatically sets Synthesis tool. For
example, if you select Generic Xilinx Platform, Synthesis tool
automatically changes to Xilinx Vivado. You can change the Synthesis tool to
Xilinx ISE.

* Additional source files: If you are using an hdl.BlackBox System object to
include existing Verilog or VHDL code, enter the file names. Enter each file name
manually, separated with a semicolon (;), or by using the ... button. The source
file language must match your target language.

Generate a Board-Independent IP Core from MATLAB

4\ Workflow Advisar - rlhdlc_ip_core_generic.prj

=] HOL WWarkflowr Advisor Set the target device and synthesis tool

o Define Input Types
o Fixed-Paint Conversion Warkflow: IP Core Generation hd

Platform: Generic Xilinx Platfarm = | Launch board manager
| Set Target Interface
#[HDL Code Generation Synthesis toal: | Xilinx Vivadao = | Refresh list
=[50 HDL Verification
Chip famiby: L Device: | xcTz020
Verify with HDL Test Bench Pl L LS [t
Werify with Cosimulation Package: clgdid Speed: -1

Werify with FPGA-in-the-Loop

IP core settings

Reference desigh: -
Reference design path: Brose,.,
Additional source files: Ll

Marne: |hdle_ip_core_led_blinking_fixpt_ipcore | Wersion: |10

Processor/FPGA synchronization: | Free running -

4 In the Set Target Interface step, for each port, select an option from the Target
Platform Interfaces drop-down list.

Ports
Part Marne Data Type Target Platforrm Interfaces Bit Range / Address £ FPGA Pin
4
Blink_frequency_1 nummerictype(l, 4, 1) Ax4 =" 100"
Blink_directian nurmerictypeld, 1, 0 AxT4 x"104"
a
LED numerictypell, 4, 0) External Port

5 Inthe HDL Code Generation step, optionally specify code generation options, then
click Run.

6 In the HDL Workflow Advisor message pane, click the IP core report link to view
detailed documentation for your generated IP core.

3-57

5 Code Generation

5-58

Requirements and Limitations for IP Core Generation
You cannot map to both an AXI4 interface and AXI4-Lite interface in the same IP core.

To map your design function inputs or outputs to an AXI4-Lite interface, the input and
outputs must:

* Have a bit width less than or equal to 32 bits.

* Be scalar.

When mapping design function inputs or outputs to an AXI4-Stream Video interface, the
following requirements apply:

* Ports must have a 32-bit width.

* Ports must be scalar.

* You can have a maximum of one input video port and one output video port.

The AXI4-Stream Video interface is not supported in Coprocessing - blocking
processor/FPGA synchronization mode.

Minimize Clock Enables

Minimize Clock Enables

In this section...
“Using the GUI” on page 5-60
“Using the Command Line” on page 5-60

“Limitations” on page 5-60

By default, HDL Coder generates code in a style that is intended to map to registers with
clock enables, and the DUT has a top-level clock enable port.

If you do not want to generate registers with clock enables, you can minimize the clock
enable logic. For example, if your target hardware contains registers without clock
enables, you can save hardware resources by minimizing the clock enable logic.

The following VHDL code shows the default style of generated code, which uses clock
enables. The enb signal is the clock enable:

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END IF;
END PROCESS Unit Delay process;

The following VHDL code shows the style of code you generate if you minimize clock
enables:

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END PROCESS Unit Delay process;

5-59

5 Code Generation

5-60

Using the GUI

To minimize clock enables, in the HDL Workflow Advisor, on the HDL Code Generation
> Set Code Generation Options > Set Optimization Options > General tab, select
Minimize clock enables.

Using the Command Line

To minimize clock enables, in the coder.Hd1Config configuration object, set the
MinimizeClockEnables property to true. For example:

hd1Cfg = coder.config('hdl')
hdlCfg.MinimizeClockEnables = true;

Limitations

If you specify area optimizations that the coder implements by increasing the clock rate in
certain regions of the design, you cannot minimize clock enables. The following
optimizations prevent clock enable minimization:

* Resource sharing

* RAM mapping

* Loop streaming

Verification

* “Verify Code with HDL Test Bench” on page 6-2
» “Test Bench Generation” on page 6-6

6 Verification

Verify Code with HDL Test Bench

Simulate the generated HDL design under test (DUT) with test vectors from the test
bench using the specified simulation tool.

1

2
3

6-2

Start the MATLAB to HDL Workflow Advisor.

4\ HDL Code Generation

-8 HDL Warkflow Advisor
@ Define Input Types
@ Fixed-Point Conversion
@ HDL Code Generation
-9 HDL Verification

i 0 Verify with Cosimulation

£, Synthesis and Analysis
] Create Project
- Run Lagic Synthesis
- Run Place and Route

[Y erify with HDL Test Bench

Doy Verify with FPGA-in-the-Loop

Verify the HDL code with test vectors from the test bench using the specified simulation tool.

Output Settings | Test Bench Options|

oo]

HDL Test Bench Generation Settings

Generate HDL test bench

HDL Test Bench Simulation Settings
Simulate generated HDL test bench

Simulation tool: | ModelSim

[] Skip this Step

At step HDL Verification, click Verify with HDL Test Bench.
Select Generate HDL test bench.

Verify Code with HDL Test Bench

This option enables HDL Coder to generate HDL test bench code from your MATLAB
test script.

Optionally, select Simulate generated HDL test bench. This option enables
MATLAB to simulate the HDL test bench with the HDL DUT.

If you select this option, you must also select the Simulation tool.

For Test Bench Options, select and set the optional parameters according to the
descriptions in the following table.

HDL Test Bench Parameter Description

Test bench name postfix Specify the postfix for the test bench
name.

Force clock Enable for test bench to force clock
input signals.

Clock high time (ns) Specify the number of nanoseconds the
clock is high.

Clock low time (ns) Specify the number of nanoseconds the

clock is low.

Hold time (ns) Specify the hold time for input signals
and forced reset signals.

Force clock enable Enable to force clock enable.

Clock enable delay (in clock cycles) |Specify time (in clock cycles) between
deassertion of reset and assertion of
clock enable.

Force reset Enable for test bench to force reset
input signals.

Reset length (in clock cycles) Specify time (in clock cycles) between
assertion and deassertion of reset.

Hold input data between samples |Enable to hold subrate signals between
clock samples.

Input data interval Specifies the number of clock cycles
between assertions of clock enable. For
more information, see “Specify Test
Bench Clock Enable Toggle Rate” on
page 5-47.

6-3

(5 Verification

HDL Test Bench Parameter Description

Initialize test bench inputs Enable to initialize values on inputs to
test bench before test bench drives
data to DUT.

Multi file test bench Enable to divide generated test bench

into helper functions, data, and HDL
test bench code.

Test bench data file name postfix Specify the character vector to append
to name of test bench data file when
generating multi-file test bench.

Test bench reference postfix Specify the character vector to append
to names of reference signals in test
bench code.

Ignore data checking (number of |Specify the number of samples at the
samples) beginning of simulation during which
output data checking is suppressed.

Simulation iteration limit Specify the maximum number of test
samples to use during simulation of
generated HDL code.

6 Optionally, select Skip this step if you don’t want to use the HDL test bench to verify
the HDL DUT.
7 Click Run.

If the test bench and simulation is successful, you should see messages similar to
these in the message pane:

Begin TestBench generation.

Collecting data...

Begin HDL test bench file generation with logged samples

Generating test bench: mlhdlc_sfir fixpt tb.vhd

Creating stimulus vectors...

Simulating the design 'mlhdlc_sfir fixpt' using 'ModelSim'.

Generating Compilation Report mlhdlc_sfir fixpt vsim log compile.txt
Generating Simulation Report mlhdlc_sfir fixpt vsim log sim.txt

Simulation successful.

Elapsed Time: 113.0315 sec(s)

6-4

Verify Code with HDL Test Bench

If there are errors, those messages appear in the message pane. Fix errors and click
Run.

6 Verification

Test Bench Generation

6-6

In this section...

“How Test Bench Generation Works” on page 6-6
“Test Bench Data Files” on page 6-6

“Test Bench Data Type Limitations” on page 6-6
“Use Constants Instead of File I/O” on page 6-7

How Test Bench Generation Works

HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink
simulation to data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat files.
The test bench compares the actual DUT output with the expected output, which is also
saved in .dat files. After you generate code, the message window displays links to the test
bench data files.

Reference data is delayed by one clock cycle in the waveform viewer compared to default
test bench generation due to the delay in reading data from files.

Test Bench Data Files

The coder saves stimulus and reference data for each DUT input and output in a separate
test bench data file (.dat), with the following exceptions:

» Two files are generated for the real and imaginary parts of complex data.
* Constant DUT input data is written to the test bench as constants.

Vector input or output data is saved as a single file.

Test Bench Data Type Limitations

If you have double, single, or enumeration data types at the DUT inputs and outputs, the
simulation data is generated as constants in the test bench code, instead of writing the
simulation data to files.

Test Bench Generation

Use Constants Instead of File 1/0

You can generate test bench stimulus and reference data as constants in the test bench
code instead of using file I/0. However, simulating a long running test bench that uses
constants requires more memory than a test bench that uses file I/O.

Test bench generation automatically generates data as constants if your DUT inputs or
outputs use data types that are not supported for file I/O. For details, see “Test Bench
Data Type Limitations” on page 6-6.

To generate a test bench that uses constants instead of file I/O:

1 In the HDL Workflow Advisor, select the HDL Verification > Verify with HDL Test
Bench task.

2 Inthe Test bench Options tab, disable the Use file I/O for test bench option.

Deployment

7 Deployment

Generate Synthesis Scripts

7-2

You can generate customized synthesis scripts for the following tools:

Xilinx Vivado®

Xilinx ISE

Microsemi Libero

Mentor Graphics® Precision
Altera Quartus II

Synopsys® Synplify Pro®

You can also generate a synthesis script for a custom tool by specifying the fields
manually.

To generate a synthesis script:

A W N -

In the HDL Workflow Advisor, select the HDL Code Generation task.
In the Script Options tab, select Synthesis.
For Choose synthesis tool, select a tool option.

If you want to customize your script, use the Synthesis file postfix, Synthesis
initialization, Synthesis command, and Synthesis termination text fields to do
so.

After you generate code, your synthesis Tcl script (. tcl) is in the same folder as your
generated HDL code.

Optimization

* “RAM Mapping” on page 8-2

* “Map Persistent Arrays and dsp.Delay to RAM” on page 8-3

* “RAM Mapping Comparison for MATLAB Code” on page 8-8

+ “Pipelining MATLAB Code” on page 8-9

» “Pipeline MATLAB Expressions” on page 8-11

» “Distributed Pipelining” on page 8-13

* “Optimize MATLAB Loops” on page 8-14

* “Constant Multiplier Optimization” on page 8-17

+ “Distributed Pipelining for Clock Speed Optimization” on page 8-19
* “Map Matrices to Block RAMs to Reduce Area” on page 8-24

* “Resource Sharing of Multipliers to Reduce Area” on page 8-29
* “Loop Streaming to Reduce Area” on page 8-38

* “Constant Multiplier Optimization to Reduce Area” on page 8-44

8 Optimization

RAM Mapping

RAM mapping is an area optimization that maps storage and delay elements in your
MATLAB code to RAM. Without this optimization, storage and delay elements are mapped

to registers. RAM mapping can therefore reduce the area of your design in the target
hardware.

You can map the following MATLAB code elements to RAM:

* persistent array variable
* dsp.Delay System object
* hdl.RAM System object

8-2

Map Persistent Arrays and dsp.Delay to RAM

Map Persistent Arrays and dsp.Delay to RAM

In this section...

“How To Enable RAM Mapping” on page 8-3

“RAM Mapping Requirements for Persistent Arrays and System object Properties” on
page 8-4

“RAM Mapping Requirements for dsp.Delay System Objects” on page 8-6

How To Enable RAM Mapping

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation > Optimizations tab.

Select the Map persistent array variables to RAMs option.

Set the RAM mapping threshold to the size (in bits) of the smallest persistent
array, user-defined System object private property, or dsp.Delay that you want to
map to RAM.

8-3

8 Optimization

4\ HDL Code Generation EI@
=] HDL Workflow Advisor Generate synthesizable HDL code from the fixed-point MATLAB code.
E‘J Float-t.o-leed ‘..'\"orlcﬂ?w . | Target | Coding Style | Clocks & Ports | Test Bench |} Optimizations | Advanced Script Options
i i{] Verify Fleating-Point Design
| Propose Fixed-Point Types RAM Mapping
] Generate Fixed-Point Code . .
! [Verify Fixed-Point Design Map persistent array variables to RAMs
= MATLAB to HDL Workflow RAM mapping threshold: 25614
- | Code Generation
+~{1 Simulation and Verification Pipelining
E|_| Synthesis and Analysis o
~[Z Create Project [C] Register inputs
- Run Logic Synthesis [Register outputs
[Run Place and Route
[T Distribute pipeline registers
Input pipelining: 0
Output pipelining: 0
Area Optimizations
Resource sharing factor: 0
Constant multiplier optimization: :None v:
Loop Optimizations
@ MNone
) Unroll loops
() Stream loops
(7} P Run

RAM Mapping Requirements for Persistent Arrays and System
object Properties

The following table shows a summary of the RAM mapping behavior for persistent arrays
and private properties of a user-defined System object.

8-4

Map Persistent Arrays and dsp.Delay to RAM

Map Persistent Array Mapping Behavior

Variables to RAMs

Setting

on Map to RAM. For restrictions, see “RAM Mapping
Restrictions” on page 8-5.

off Map to registers in the generated HDL code.

RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private
property maps to a block RAM when all of the following conditions are true:

Each read or write access is for a single element only. For example, submatrix access
and array copies are not allowed.

Address computation logic is not read-dependent. For example, computation of a read
or write address using the data read from the array is not allowed.

Persistent variables or user-defined System object private properties are initialized to
0 if they have a cyclic dependency. For example, if you have two persistent variables, A
and B, you have a cyclic dependency if A depends on B, and B depends on A.

If an access is within a conditional statement, the conditional statement uses only
simple logic expressions (&&, | |, ~) or relational operators. For example, in the
following code, rl does not map to RAM:

if (mod(i,2) > 0)
a =rl(u);
else
rl(i) = u;
end

Rewrite complex conditions, such as conditions that call functions, by assigning them
to temporary variables, and using the temporary variables in the conditional
statement. For example, to map rl to RAM, rewrite the previous code as follows:

temp = mod(1i,2);
if (temp > 0)
a = rl(u);
else
ri(i) = u;
end
The persistent array or user-defined System object private property value depends on
external inputs.

8 Optimization

8-6

For example, in the following code, bigarray does not map to RAM because it does
not depend on u:

function z = foo(u)

persistent cnt bigarray
if isempty(cnt)
cnt = fi(0,1,16,10,hdlfimath);
bigarray = uint8(zeros(1024,1));
end
Z = U + cnt;
idx = uint8(cnt);
temp = bigarray(idx+1);
cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;
bigarray(idx+1l) = idx;
* RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is
the product NumElements * WordLength * Complexity.

* NumElements is the number of elements in the array.
* WordLength is the number of bits that represent the data type of the array.
* Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object
private property maps to a register in the HDL code.

RAM Mapping Requirements for dsp.Delay System Objects

A summary of the mapping behavior for a dsp.Delay System object is in the following
table.

Map Persistent Arrays and dsp.Delay to RAM

Map Persistent Array
Variables to RAMs
Option

Mapping Behavior

on A dsp.Delay System object maps to a block RAM when all
of the following conditions are true:
* Length property is greater than 4.
* InitialConditions property is 0.
* Delay input data type is one of the following:
* Real scalar with a non-floating-point data type.
* Complex scalar with real and imaginary parts that
are non-floating-point.
* Vector where each element is either a non-floating-
point real scalar or complex scalar.
* RAMSize is greater than or equal to the RAM Mapping
Threshold value.
* RAMSize is the product Length *
InputWordLength.
o InputWordLength is the number of bits that
represent the input data type.
If any of the conditions are false, the dsp.Delay System
object maps to registers in the HDL code.
off A dsp.Delay System object maps to registers in the

generated HDL code.

8 Optimization

RAM Mapping Comparison for MATLAB Code

8-8

hdl.RAM, dsp.Delay, persistent array variables, and user-definedSystem object private
properties can map to RAM, but have different attributes. The following table summarizes

the differences.

Attribute

hdl.RAM

dsp.Delay

Persistent Arrays
and

User-Defined
System object
Properties

RAM mapping
criteria

Unconditionally
maps to RAM

Maps to RAM in HDL
code under specific
conditions. See
“RAM Mapping
Requirements for
dsp.Delay System
Objects” on page 8-6.

Maps to RAM in HDL
code under specific
conditions. See
“RAM Mapping
Requirements for
Persistent Arrays and
System object
Properties” on page
8-4.

Address generation |User specified Automatic Automatic

and port mapping

Access scheduling User specified Automatically Automatically

inferred inferred

Overclocking None None Local multirate if
access schedule
requires it.

Latency with respect |0 0 2 cycles if local

to simulation in multirate; 1 cycle

MATLAB. otherwise.

RAM type User specified Dual port Dual port

Pipelining MATLAB Code

Pipelining MATLAB Code

Pipelining helps achieve a higher maximum clock rate by inserting registers at strategic
points in the hardware to break the critical path. However, the higher clock rate comes at
the expense of increased chip area and increased initial latency.

Port Registers

Input and output port registers for modules help partition a larger design so the critical
path does not extend across module boundaries. Having a port register at each input and
output port is a good design practice for synchronous interfaces. Distributed pipelining
does not affect port registers. To insert input or output port registers:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.
2 Enable Register inputs, Register outputs, or both.

Input and Output Pipeline Registers

You can insert multiple input and output pipeline stages. Distributed pipelining can move
these input and output pipeline registers to help reduce your critical path within the
module. If you insert input and output pipeline stages without applying distributed
pipelining, the registers stay at the DUT inputs and outputs.

To insert input or output pipeline register stages:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the
Optimizations tab.

2 For Input pipelining, Output pipelining, or both, enter the number of pipeline
register stages.

Operation Pipelining

Operation pipelining inserts one or more registers at the output of a specific expression in
your MATLAB code. If you know a specific expression is part of the critical path, you can
add a pipeline register at its output to reduce your critical path.

8-9

8 Optimization

To learn how to insert a pipeline register at the output of a MATLAB expression, see
“Pipeline MATLAB Expressions” on page 8-11.

8-10

Pipeline MATLAB Expressions

Pipeline MATLAB Expressions

In this section...

“How To Pipeline a MATLAB Expression” on page 8-11
“Limitations of Pipelining for MATLAB Expressions” on page 8-12

With the coder.hdl.pipeline pragma, you can specify the placement and number of
pipeline registers in the HDL code generated for a MATLAB expression.

If you insert pipeline registers and enable distributed pipelining, HDL Coder

automatically moves the pipeline registers to break the critical path.

How To Pipeline a MATLAB Expression

To insert pipeline registers at the output of an expression in MATLAB code, place the
expression in the coder.hdl.pipeline pragma. Specify the number of registers.

You can insert pipeline registers in the generated HDL code:
* At the output of the entire right side of an assignment statement.

The following code inserts three pipeline registers at the output of a MATLAB
expression,a + b * c:

y = coder.hdl.pipeline(a + b * ¢, 3);
* At an intermediate stage within a longer MATLAB expression.

The following code inserts five pipeline registers after the computation of b * ¢
within a longer expression, a + b * c:

y = a + coder.hdl.pipeline(b * ¢, 5);
* By nesting multiple instances of the pragma.

The following code inserts five pipeline registers after the computation of b * ¢, and
two pipeline registers at the output of the whole expression, a + b * c:

y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c, 5),2);

Alternatively, to insert one pipeline register instead of multiple pipeline registers, you can
omit the second argument in the pragma:

8-11

8 Optimization

8-12

coder.hdl.pipeline(a + b * ¢);

a + coder.hdl.pipeline(b * c);

coder.hdl.pipeline(a + coder.hdl.pipeline(b * ¢));

Limitations of Pipelining for MATLAB Expressions

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if any
of the variables in the expression are:

In a loop.
A persistent variable that maps to a state element, like a state register or RAM.

An output of a function. For example, in the following code, you cannot add a pipeline
register for an expression containing y:

function [y] = myfun(x)
y = X + 5;
end

In a data feedback loop. For example, in the following code, you cannot pipeline an
expression containing the t or pvar variables:

persistent pvar;
t =u + pvar;
pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable
or other no-op expression. To learn how to insert a pipeline register for a function input
variable, see “Port Registers” on page 8-9.

See Also
coder.hdl.pipeline

More About

“Pipelining MATLAB Code” on page 8-9

Distributed Pipelining

Distributed Pipelining

In this section...

“What is Distributed Pipelining?” on page 8-13
“Benefits and Costs of Distributed Pipelining” on page 8-13

“Selected Bibliography” on page 8-13

What is Distributed Pipelining?

Distributed pipelining, or register retiming, is a speed optimization that moves existing
delays in a design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

Benefits and Costs of Distributed Pipelining

Distributed pipelining can reduce your design’s critical path, enabling you to use a higher
clock rate and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If you

need to insert additional delays in your design to enable distributed pipelining, this
increases the area and the initial latency of your design.

Selected Bibliography

Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol.
6, Number 1, 1991, pp. 5-35.

8-13

8 Optimization

Optimize MATLAB Loops

8-14

In this section...

“Loop Streaming” on page 8-14

“Loop Unrolling” on page 8-14

“How to Optimize MATLAB Loops” on page 8-15
“Limitations for MATLAB Loop Optimization” on page 8-15

With loop optimization, you can stream or unroll loops in generated code. Loop streaming
is an area optimization, and loop unrolling is a speed optimization.

Loop Streaming

HDL Coder streams a loop by instantiating the loop body once and using that instance for
each loop iteration. The coder oversamples the loop body instance to keep the generated
loop functionally equivalent to the original loop.

If you stream a loop, the advantage is decreased hardware resource usage because the
loop body is instantiated fewer times. The disadvantage is the hardware implementation
runs at a lower speed.

You can partially stream a loop. A partially streamed loop instantiates the loop body more
than once, so it uses more area than a fully streamed loop. However, a partially streamed
loop also uses less oversampling than a fully streamed loop.

Loop Unrolling

HDL Coder unrolls a loop by instantiating multiple instances of the loop body in the
generated code. You can also partially unroll a loop. The generated code uses a loop
statement that contains multiple instances of the original loop body and fewer iterations
than the original loop.

The distributed pipelining and resource sharing can optimize the unrolled code.
Distributed pipelining can increase speed. Resource sharing can decrease area.

When loop unrolling creates multiple instances, these instances are likely to increase
area. Loop unrolling also makes the code harder to read.

Optimize MATLAB Loops

How to Optimize MATLAB Loops

You can specify a global loop optimization by using the HDL Workflow Advisor, or at the
command line.

You can also specify a local loop optimization for a specific loop by using the
coder.hdl.loopspec pragma in the MATLAB code. If you specify both a global and
local loop optimization, the local loop optimization overrides the global setting.

Global Loop Optimization
To specify a loop optimization in the Workflow Advisor:

1 In the HDL Workflow Advisor left pane, select HDL Workflow Advisor > HDL Code
Generation.

2 In the Optimizations tab, for Loop Optimizations, select None, Unroll Loops, or
Stream Loops.

To specify a loop optimization at the command line in the MATLAB to HDL workflow,
specify the LoopOptimization property of the coder.Hd1Config object. For example,
for a coder.Hd1lConfig object, hdlcfg, enter one of the following commands:

hdlcfg.LoopOptimization

"UnrollLoops'; % unroll loops
hdlcfg.LoopOptimization = 'StreamLoops'; % stream loops
hdlcfg.LoopOptimization = 'LoopNone'; % no loop optimization
Local Loop Optimization

To learn how to optimize a specific MATLAB loop, see coder.hdl.loopspec.

Note If you specify the coder.unroll pragma, this pragma takes precedence over
coder.hdl.loopspec. coder.hdl.loopspec has no effect.

Limitations for MATLAB Loop Optimization

HDL Coder cannot stream a loop if:

* The loop index counts down. The loop index must increase by 1 on each iteration.

8-15

8 Optimization

8-16

* There are two or more nested loops at the same level of hierarchy within another loop.
* Any particular persistent variable is updated both inside and outside a loop.
* A persistent variable that is initialized to a nonzero value is updated inside the loop.

HDL Coder can stream a loop when the persistent variable is:

* Updated inside the loop and read outside the loop.
* Read within the loop and updated outside the loop.

You cannot use the coder.hdl.loopspec('stream') pragma:

* In a subfunction. You must specify it in the top-level MATLAB design function.
» For a loop that is nested within another loop.

* For a loop containing a nested loop, unless the streaming factor is equal to the number
of iterations.

See Also
coder.hdl.loopspec

Constant Multiplier Optimization

Constant Multiplier Optimization

In this section...

“What is Constant Multiplier Optimization?” on page 8-17
“Specify Constant Multiplier Optimization” on page 8-18

What is Constant Multiplier Optimization?

The Constant multiplier optimization option enables you to specify use of canonical
signed digit (CSD) or factored CSD (FCSD) optimizations for processing coefficient

multiplier operations.

The following table shows the Constant multiplier optimization values.

Constant Multiplier
Optimization Value

Description

None (default)

By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains
multiplier operations.

CSD

When you specify this option, the generated code
decreases the area used by the model while maintaining or
increasing clock speed, using canonical signed digit (CSD)
techniques. CSD replaces multiplier operations with add
and subtract operations.

CSD minimizes the number of addition operations required
for constant multiplication by representing binary numbers
with a minimum count of nonzero digits.

FCSD

This option uses factored CSD (FCSD) techniques, which
replace multiplier operations with shift and add/subtract
operations on certain factors of the operands. These
factors are generally prime but can also be a number close
to a power of 2, which favors area reduction.

This option lets you achieve a greater area reduction than
CSD, at the cost of decreasing clock speed.

8-17

8 Optimization

8-18

Constant Multiplier
Optimization Value

Description

Auto

When you specify this option, HDL Coder chooses between
the CSD or FCSD optimizations. The coder chooses the
optimization that yields the most area-efficient
implementation, based on the number of adders required.

HDL Coder does not use multipliers, unless conditions are
such that CSD or FCSD optimizations are not possible (for
example, if the design uses floating-point arithmetic).

Specify Constant Multiplier Optimization

To specify constant multiplier optimization:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select the

Optimizations tab.

2 For Constant multiplier optimization, select CSD, FCSD, or Auto.

Distributed Pipelining for Clock Speed Optimization

Distributed Pipelining for Clock Speed Optimization

This example shows how to use the distributed pipelining and loop unrolling optimizations
in HDL Coder to optimize clock speed.

Introduction

Distributed pipelining is a design-wide optimization supported by HDL Coder for
improving clock frequency. When you turn on the 'Distribute Pipeline Registers' option in
HDL Coder, the coder redistributes the input and output pipeline registers of the top level
function along with other registers in the design in order to minimize the combinatorial
logic between registers and thus maximize the clock speed of the chip synthesized from
the generated HDL code.

Consider the following example design of a FIR filter. The combinatorial logic from an
input or a register to an output or another register contains a sum of products. Loop
unrolling and distributed pipelining moves the output registers at the design level to
reduce the amount of combinatorial logic, thus increasing clock speed.

MATLAB® Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a
MATLAB test bench that exercises the filter.

design_name = 'mlhdlc fir';
testbench _name = 'mlhdlc fir tb';

1 Design: mlhdlc fir
2 Test Bench: mlhdlc fir tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc fir'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc_temp dir);

8-19

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

matlab:edit('mlhdlc_fir')
matlab:edit('mlhdlc_fir_tb')

8 Optimization

copyfile(fullfile(mlhdlc _demo dir, [design name,'.m*']), mlhdlc_ temp dir);

copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc temp dir);
Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no run-time errors.

mlhdlc fir tb

NN

R IV DA o
| II| II',II j | | II',)‘

-5
50 100

=

50 100 150 200

Filtered Output
5 ﬁ\ “ r.'~. f’n I 5 ' |
r 1'| fd\ !H| J| Llll /r -ti |H I'.I j"’/\ II',I Ill.“ﬁ I,III Il'/ﬁll'ul /ﬂl'l,l I[
D hll ||' |I r{ | ||! J 0 .III ||II IIII |' II,I | 'III |'
-5 l\Lrll \hj v l’gj“l . I'uf' I'\/ V I'\/

8-20

Distributed Pipelining for Clock Speed Optimization

Input and Output PSD

Input
Output

-40 -

50 |I'k/-\ \/'/\h_-\fﬂ\/\/‘\/\/ VEIH\/-WII]
I

60

fﬁ'lr.- A I'ﬂ A
"” .{nﬂJ lllf\”fﬁulﬁn ||'ﬁ|I'|'|| 'IH"'P |

N
—BD 1 1 [
1] 20 40 o0 80 100 120 140

i
-]
o

T

—

Create a Fixed-Point Conversion Config Object
To perform fixed-point conversion, you need a 'fixpt' config object.

Create a 'fixpt' config object and specify your test bench name:
close all;

fixptcfg = coder.config('fixpt');
fixptcfg.TestBenchName = 'mlhdlc fir tb';

Create an HDL Code Generation Config Object

To generate code, you must create an 'hdl' config object and set your test bench name:

8-21

8 Optimization

8-22

hdlcfg = coder.config('hdl");
hdlcfg.TestBenchName = 'mlhdlc fir tb"';

Distributed Pipelining

To increase the clock speed, the user can set a number of input and output pipeline stages
for any design. In this particular example Input pipelining option is set to '1' and Output
pipelining option is set to '20'. Without any additional options turned on these settings
will add one input pipeline register at all input ports of the top level design and 20 output
pipeline registers at each of the output ports.

If the option 'Distribute pipeline registers' is enabled, HDL Coder tries to reposition the
registers to achieve the best clock frequency.

In addition to moving the input and output pipeline registers, HDL Coder also tries to
move the registers modeled internally in the design using persistent variables or with
system objects like dsp.Delay.

Additional opportunities for improvements become available if you unroll loops. The
'Unroll Loops' option unrolls explicit for-loops in MATLAB code in addition to implicit for-
loops that are inferred for vector and matrix operations. 'Unroll Loops' is necessary for
this example to do distributed pipelining.

hdlcfg.InputPipeline = 1;

hdlcfg.OutputPipeline = 20;

hdlcfg.DistributedPipelining = true;

hdlcfg.LoopOptimization = 'UnrollLoops’;

Examine the Synthesis Results

If you have ISE installed on your machine, run the logic synthesis step

hdlcfg.SynthesizeGeneratedCode = true;
codegen -float2fixed fixptcfg -config hdlcfg mlhdlc fir

View the result report
edit codegen/mlhdlc_fir/hdlsrc/ise prj/mlhdlc_fir fixpt syn results.txt
In the synthesis report, note the clock frequency reported by the synthesis tool. When you

synthesize the design with the loop unrolling and distributed pipelining options enabled,
you see a significant clock frequency increase with pipelining options turned on.

Distributed Pipelining for Clock Speed Optimization

Clean Up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir, 's');

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc fir'];

8-23

8 Optimization

Map Matrices to Block RAMs to Reduce Area

8-24

This example shows how to use the RAM mapping optimization in HDL Coder™ to map
persistent matrix variables to block RAMs in hardware.

Introduction

One of the attractive features of writing MATLAB code is the ease of creating, accessing,
modifying and manipulating matrices in MATLAB.

When processing such MATLAB code, HDL Coder maps these matrices to wires or
registers in HDL. For example, local temporary matrix variables are mapped to wires,
whereas persistent matrix variables are mapped to registers.

The latter tends to be an inefficient mapping when the matrix size is large, since the
number of register resources available is limited. It also complicates synthesis, placement
and routing.

Modern FPGAs feature block RAMs that are designed to have large matrices. HDL Coder
takes advantage of this feature and automatically maps matrices to block RAMs to
improve area efficiency. For certain designs, mapping these persistent matrices to RAMs
is mandatory if the design is to be realized. State-of-the-art synthesis tools may not be
able to synthesize designs when large matrices are mapped to registers, whereas the
problem size is more manageable when the same matrices are mapped to RAMs.

MATLAB Design

design _name = 'mlhdlc_sobel’;
testbench _name = 'mlhdlc_sobel tb';

* MATLAB Design: mlhdlc sobel
* MATLAB Testbench: mlhdlc_sobel tb
* Input Image: stop _sign

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc_sobel'];

% create a temporary folder and copy the MATLAB files

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

matlab:edit('mlhdlc_sobel')
matlab:edit('mlhdlc_sobel_tb')
matlab:imshow('mlhdlc_img_stop_sign.gif')

Map Matrices to Block RAMs to Reduce Area

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);
cd(mlhdlc_temp dir);

% copy the design files to the temporary directory
copyfile(fullfile(mlhdlc _demo dir, [design name,'.m*']), mlhdlc_ temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc sobel tb

Checker Board Vertical Gradient Horizontal Gradient Edges

Create a New HDL Coder™ Project
Run the following command to create a new project.
coder -hdlcoder -new mlhdlc ram

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB function, and
'mlhdlc sobel tb.m'as the MATLAB test bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Turn On the RAM Mapping Optimization

Launch the Workflow Advisor.

8-25

8 Optimization

The checkbox '"Map persistent array variables to RAMs' needs to be turned on to map
persistent variables to block RAMs in the generated code.

4\ HDL Code Generation

E‘—I MATLAB HDL Coder Workflow | Targetl Coding Stylel Clocks & Ports | Test Bench | Optimizations | Advanced | Script Options
=@ Float-to-Fixed Workflow

a Verify Floating-Peint Design
-2 Propose Fixed-Point Types Map persistent array variables to RAMs
a Generate Fixed-Point Code

RAM Mapping

E @ Verify Fixed-Paint Design RAM mapping threshold: 256 (%
L] MATLAB to HDL Workflow e
B Code Generation | pemnng
t-{ Simulation and Verification Input pipelining: 12
E!_I Synthesis and Analysis Output pipelining: =
[Create Project
- Run Logic Synthesis [] Distribute pipeline registers

“J Run Place and Route
Area Optimizations

Resource sharing factor: 0
Constant multiplier optimization: | None -

Loop Optimizations

@ MNone

) Unroll Loops

() Stream Loops

Run Fixed-Point Conversion and HDL Code Generation

In the Workflow Advisor, right-click the 'Code Generation' step. Choose the option 'Run to
selected task' to run all the steps from the beginning through HDL code generation.

Examine the Generated Code

Examine the messages in the log window to see the RAM files generated along with the
design.

8-26

Map Matrices to Block RAMs to Reduce Area

$## Begin VHDL Code Generation

#4# VWorking on mlhdlc_scbel FixPt/u_d ram/DualPortRaM 128x%b as DualPortBRaM 128x0b.vhd

Working on mlhdlc sobel FixPt/u d ram as u d ram.vhd

#4## Working on mlhdlc_scbel FixPt/u d ram/DualPortBAM 128x9b as DualPortBaM 128x0b block.vhd
#4# Working on mlhdlc schel FixPt/u d ram as w d ram bBlock.vhd

Working on mlhdlc schel FixPt as mlhdlc scbel FixFPt.vhd

##4 Generating package file mlhdlc sckel FixPt pkg.vhd

$## The DUT requires an initial pipeline setup latency. Each output port experiences these

additional delays

#4#4 Cutput port 0: 4 cycles

#4## Cutput port 1: 4 cycles

Generating Resource Utilization Report resource report.html
Elapsed Time: 33.1382 =ec(s)

4 1 | 3

A warning message appears for each persistent matrix variable not mapped to RAM.
Examine the Resource Report

Take a look at the generated resource report, which shows the number of RAMs inferred,
by following the 'Resource Utilization report...' link in the generated code window.

Multipliers 0
Adders/Subtractors 19
Registers 29
RAM:s 2|
Multiplexers 5

8-27

8 Optimization

8-28

Additional Notes on RAM Mapping

* Persistent matrix variable accesses must be in unconditional regions, i.e., outside any
if-else, switch case, or for-loop code.

* MATLAB functions can have any number of RAM matrices.

* All matrix variables in MATLAB that are declared persistent and meet the threshold
criteria get mapped to RAMs.

* A warning is shown when a persistent matrix does not get mapped to RAM.

* Read-dependent write data cycles are not allowed: you cannot compute the write data
as a function of the data read from the matrix.

* Persistent matrices cannot be copied as a whole or accessed as a sub matrix: matrix
access (read/write) is allowed only on single elements of the matrix.

* Mapping persistent matrices with non-zero initial values to RAMs is not supported.
Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc _demo dir);
rmdir(mlhdlc_temp dir,

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',
[tempdir 'mlhdlc_sobel'];

s');

'matlabl

Resource Sharing of Multipliers to Reduce Area

Resource Sharing of Multipliers to Reduce Area

This example shows how to use the resource sharing optimization in HDL Coder™. This
optimization identifies functionally equivalent multiplier operations in MATLAB® code

and shares them in order to optimize design area. You have control over the number of
multipliers to be shared in the design.

Introduction

Resource sharing is a design-wide optimization supported by HDL Coder™ for
implementing area-efficient hardware.

This optimization enables users to share hardware resources by mapping 'N' functionally-
equivalent MATLAB operators, in this case multipliers, to a single operator.

The user specifies 'N' using the 'Resource Sharing Factor' option in the optimization
panel.

Consider the following example model of a symmetric FIR filter. It contains 4 product
blocks that are functionally equivalent and which are mapped to 4 multipliers in
hardware. The Resource Utilization Report shows the number of multipliers inferred from
the design.

In this example you will run fixed-point conversion on the MATLAB design
'mlhdlc_sharing' followed by HDL Coder. This prerequisite step normalizes all the
multipliers used in the fixed-point code. You will input a '‘proposed-type settings' during
this fixed-point conversion phase.

MATLAB Design

The MATLAB code used in the example is a simple symmetric FIR filter written in
MATLAB and also has a testbench that exercises the filter.

design name = 'mlhdlc_sharing';
testbench _name = 'mlhdlc _sharing tb';

Let us take a look at the MATLAB design.

type(design name);

Q0.0.0.0.0.000 0 000.0.00.00.9:9:9,0.0,0.0,0.0.0.0.0.0.0.0.0.0.0.00 00000 0000.0.0.90,9.0.99:0.:9.:0.0.0.0.0.0.0.0.0.0.0.0.00000

% MATLAB design: Symmetric FIR Filter

8-29

8 Optimization

Key Design pattern covered in this example:

o° o°

(%]
(O]
—
o]
@
-
o
©
>
+
c
]
+ n
wn <
— @
wn +
Qo
v E
o @©
o
L ©
o
)
(9]
o) ©
c
— C
n -~
=}
©
T o
[0}
+ 0
C @©
v
(%]
v n
C
o C
[ORN}
S
(9]
[
(OB
Pt
o O
+ O
wn O
o o
v Qo
rurir
—
-~ -
[Ny N
—_—
— N
NN
o° o°

Copyright 2011-2015 The MathWorks, Inc.

)
“

s#codegen

% Symmetric FIR Filter

function [y out, x out] = mlhdlc_sharing(x_in, h)

persistent udl ud2 ud3 ud4 ud5 ud6 ud7 ud8;

if isempty(udl)

ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; udé = 0; ud7 = 0; ud8 = 0;

udl = 0;

end

X out = ud8;

al = udl + ud8;
a2 = ud2 + ud7;
a3 = ud3 + ud6;
a4 = ud4 + ud5;

% filtered output

y out = (h(1) * al + h(2) * a2) + (h(3) * a3 + h(4) * a4);

update the delay line

ud8

ud7;

ud7 = ud6;

udé = ud5;

ud5 = ud4;

ud4 = ud3;

ud3 = ud2;

ud2 = udl;

udl = x in;

end

type(testbench _name);

8-30

Resource Sharing of Multipliers to Reduce Area

% Copyright 2011-2015 The MathWorks, Inc.
clear mlhdlc_sharing;

% input signal with noise
X_in = cos(3.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75))."';

len = length(x _in);
zeros(1l,len);
zeros(1l,len);

Define a regular MATLAB constant array:

filter coefficients
h =1-0.1339 -0.0838 0.2026 0.4064];

for ii=1:1len
data = x_in(ii);
% call to the design 'mlhdlc sfir' that is targeted for hardware
[y out(ii), x out(ii)] = mlhdlc_sharing(data, h);

end

figure('Name', [mfilename, ' plot']);
plot(1l:len,y out);

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlab
[tempdir 'mlhdlc sfir sharing'l;

mlhdlc demo dir
mlhdlc temp dir

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc temp dir);

cd(mlhdlc temp dir);

copyfile(fullfile(mlhdlc_demo dir, [design name,'.m*']), mlhdlc_temp dir);
copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc_temp dir);

8-31

8 Optimization

8-32

Create a New HDL Coder Project
Run the following command to create a new project:
coder -hdlcoder -new mlhdlc sfir sharing

Next, add the file 'mlhdlc_sharing.m' to the project as the MATLAB Function and
'mlhdlc sharing tb.m'as the MATLAB Test Bench.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Realize an N-to-1 Mapping of Multipliers

Turn on the resource sharing optimization by setting the 'Resource Sharing Factor' to a
positive integer value.

This parameter specifies 'N' in the N-to-1 hardware mapping. Choose a value of N > 1.

Resource Sharing of Multipliers to Reduce Area

-
A\ Workflow Advisor - mihdlc_sfir_sharing.prj

= | Verify with HDL Test Bench
-0 Verify with Cosimulation
- Verify with FPGA-in-the-Loop Distributed pipeline priority: | Numerical Integrity

[Distribute pipeline registers

[T Preserve design delays
Input pipelining: U=
Output pipelining: 0=

Pipeline variables:

Area Optimizations

Resource sharing factor: 0=

Share Multipliers Multiplier sharing minimurn bitwidth

Multiplier promotion threshold
[] Share Adders Adder sharing minimum bitwidth
Constant multiplier optimization: :None ':
"‘; Loop Optimizations
7 @ None
) Unrell loops

() Stream loops

= HDL Workflow Advisor ‘Generate synthesizable HDL code from the fixed-point MATLAB code.
>0 Define Input Types
& Fixed-Point Conversion | Targetl Coding Stylel Coding Standards | Clocks & Ports| Optimizations | Advanced | Script Options
o Select Code Generation Target [T] Register inputs
o=
-1 HDL Verification 7] Register autputs

e[<]+

mn

Examine the Resource Report

There are 4 multiplication operators in this example design. Generating HDL with a
'‘SharingFactor' of 4 will result in only one multiplier in the generated code.

Multipliers
Adders/Subtractors
Fegisters

EAMs
Multiplexers

8-33

8 Optimization

Sharing Architecture

The following figure shows how the algorithm is implemented in hardware when we
synthesize the generated code without turning on the sharing optimization.

Symmetric FIR Filter

+—x_out Z' Z 7' e 7

—x_in—»{ Z' H» Z° z' z'

1

X_out

The following figure shows the sharing architecture automatically implemented by HDL
Coder when the sharing optimization option is turned on.

8-34

Resource Sharing of Multipliers to Reduce Area

The inputs to the shared multiplier are time-multiplexed at a faster rate (in this case 4x
faster and denoted in red). The outputs are then routed to the respective consumers at a
slower rate (in green).

8-35

8 Optimization

8-36

Symmetric FIR Filter

7' - ra

«—X out

—X_in—»

—h{1}—»
—h(2}—»|
4— Serialize —1
— h(3)—» ¢
—h{4}—»
Shared Logic Runs
4 times faster

Serialize

E=

De-Serialize

-

Y

/_out

Resource Sharing of Multipliers to Reduce Area

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the
option 'Run to selected task' to run all the steps from the beginning through the HDL
code generation.

The detailed example Fixed-point conversion derived ranges provides a tutorial for
updating the type proposal settings during fixed-point conversion.

Note that to share multipliers of different word-length, in the Optimization -> Resource
Sharing tab of HDL Configuration Parameters, specify the 'Multiplier promotion
threshold'. For more information, see the Resource Sharing Documentation.

Run Synthesis and Examine Synthesis Results

Synthesize the generated code from the design with this optimization turned off, then
with it turned on, and examine the area numbers in the resource report.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

[tempdir 'mlhdlc _sfir sharing'];

8-37

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',

'matlabl

8 Optimization

Loop Streaming to Reduce Area

8-38

This example shows how to use the design-level loop streaming optimization in HDL
Coder™ to optimize area.

Introduction

A MATLAB® for loop generates a FOR GENERATE loop in VHDL. Such loops are always
spatially unrolled for execution in hardware. In other words, the body of the software loop
is replicated as many times in hardware as the number of loop iterations. This results in
inefficient area usage.

The loop streaming optimization creates an alternative implementation of a software loop,
where the body of the loop is shared in hardware. Instead of spatially replicating copies of
the loop body, HDL Coder™ creates a single hardware instance of the loop body that is
time-multiplexed across loop iterations.

MATLAB Design

The MATLAB code used in this example implements a simple FIR filter. This example also
shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc fir';
testbench name = 'mlhdlc fir tb';

1 Design: mlhdlc fir
2 Test Bench: mlhdlc fir tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos’,
[tempdir 'mlhdlc fir'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~1 = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc _temp dir);

cd(mlhdlc_temp dir);

'matlabl

matlab:edit('mlhdlc_fir')
matlab:edit('mlhdlc_fir_tb')

Loop Streaming to Reduce Area

copyfile(fullfile(mlhdlc _demo dir, [design name,'.m*']), mlhdlc_ temp dir);

copyfile(fullfile(mlhdlc _demo dir, [testbench name,'.m*']), mlhdlc temp dir);
Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc fir tb

Input = 1000 Hz

MNoise
5
[\ \
| .
|

R IV DA o
| II| II',II j |III I||| II',)‘

=
_———__
{T_
=

50 100

50 100 150 200

Filtered Output
5 ﬁ\ “ r.'~. f’n I 5 ' |
r 1'| fd\ !H| J| Llll /r -ti |H I'.I j"’/\ II',I Ill.“ﬁ I,III Il'/ﬁll'ul /ﬂl'l,l I[
D hll ||' |I r{ | ||! J 0 .III ||II IIII |' II,I | 'III |'
VY] VUV

8-39

8 Optimization

8-40

Input and Output PSD

Input
Output

-40 -

50 |I'k/-\ \/'/\h_-\fﬂ\/\/‘\/\/ VEIH\/-WII]
A

i
|
=
T
—
—
—
-
—
i
_‘:=-
-

T) Illf'i '| ” 'f ' II lﬁql '||ﬁ|l || | 'ﬁ(| ||P |

0 20 40 60 80 100 120 140

Creating a New Project From the Command Line

To create a new project, enter the following command:

coder -hdlcoder -new fir project

Next, add the file 'mlhdlc firm' to the project as the MATLAB Function and
‘mlhdlc fir th.m' as the MATLAB Test Bench.

Launch the Workflow Advisor.

You can refer to Getting Started with MATLAB to HDL Workflow tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Loop Streaming to Reduce Area

Turn On Loop Streaming

The loop streaming optimization in HDL Coder converts software loops (either written
explicitly using a for-loop statement, or inferred loops from matrix/vector operators) to

area-friendly hardware loops.

-

\ HDL Code Generation

BJ MATLAB HDL Coder Workflow

[-] Float-to-Fixed Workflow

i-[Z] Verify Floating-Point Design
- Propose Fixed-Point Types
7 Generate Fixed-Point Code
{7 Verify Fixed-Point Design
I MATLAB to HDL Workflow

= Synthesis and Analysis
[Create Project
[Run Logic Synthesis

""" [Run Place and Route

RAM Mapping
Map persistent array variables to RAMs
RAM mapping threshold:
Pipelining
Input pipelining:
Output pipelining:
[T Distribute pipeline registers

Area Optimizations

Resource sharing factor:

Constant multiplier optimization: |Mone - |

Loop Optimizations
@ Mone

() Unroll Loops

Al | |l

Generates synthesizable HDL code for your fixed-point MATLAB code.

| Targetl Coding Style | Clocks & Ports | Test Bench| Qptimizations | Advanced | Script Options

L= =]=]

25615

Run

8-41

8 Optimization

Run Fixed-Point Conversion and HDL Code Generation

Right-click the 'Code Generation' step. Choose the option 'Run to selected task' to run all
the steps from the beginning through HDL code generation.

Examine the Generated Code

When you synthesize the design with the loop streaming optimization, you see a reduction
in area resources in the resource report. Try generating HDL code with and without the
optimization.

The resource report without the loop streaming optimization:

Multipliers 16
Adders/Subtractors 31
Registers 106
RAMSs 0
Multiplexers 0

The resource report with the loop streaming optimization enabled:

Multipliers 1
Adders/Subtractors 17
Registers 448 |
RAMs 0
Multiplexers 5

Known Limitations

Loops will be streamed only if they are regular nested loops. A regular nested loop
structure is defined as one where:

8-42

Loop Streaming to Reduce Area

None of the loops in any level of nesting appear in a conditional flow region, i.e. no
loop can be embedded within if-else or switch-else regions.

Loop index variables are monotonically increasing.
Total number of iterations of the loop structure is non-zero.
There are no back-to-back loops at the same level of the nesting hierarchy.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos',
[tempdir 'mlhdlc fir'];

clear mex;
cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

8-43

'matlabl

8 Optimization

Constant Multiplier Optimization to Reduce Area

8-44

This example shows how to perform a design-level area optimization in HDL Coder by
converting constant multipliers into shifts and adds using canonical signed digit (CSD)
techniques.

Introduction

This tutorial shows how the use of canonical signed digit (CSD) representation of
multiplier constants (for example, in gain coefficients or filter coefficients) can
significantly reduce the area of the hardware implementation.

Canonical Signed Digit (CSD) Representation

A signed digit (SD) representation is an augmented binary representation with weights
0,1 and -1.

Xio=Y21g, .2
where
r, =0,1,-1(1)
For example, here are a couple of signed digit representations for 93:
X0 =64+ 16+ 13 = 01011101
Xyg=128 —32 — 2 — 1 = 10100011

Note that the signed digit representation is non-unique. A canonical signed digit (CSD)
representation is an SD representation with the minimum number of non-zero elements.

Here are some properties of CSD numbers:

1 No two consecutive bits in a CSD number are non-zero
2 CSD representation is guaranteed to have minimum number of non-zero bits

3 CSD representation of a number is unique

Constant Multiplier Optimization to Reduce Area

CSD Multiplier

Let us see how a CSD representation can yield an implementation requiring a minimum
number of adders.

Let us look at CSD example:

231 * x

(11100111) * x

(1001'01001"') * x

(256 - 32 + 8 - 1) * x

(X << 8) - (x << 5) + (x << 3) -x

y
231 in binary form

231 in signed digit form

o° o° o o°

cost of CSD: 3 Adders

FCSD Multiplier

A combination of factorization and CSD representation of a constant multiplier can lead to
further reduction in hardware cost (number of adders).

FCSD can further reduce the number of adders in the above constant multiplier:

231 * x

(7 * 33) * x

p=(x << 5) +x

= (y_tmp << 3) - y tmp % cost of FCSD: 2 Adders

3

y
y
y t
y
CSD/FCSD Costs

This table shows the costs (C) of all 8-bit multipliers.

8-45

8 Optimization

¢ Coeflicient
0 1, 2, 4. 8, 16, 32, 64, 128, 256

3,5,6,7,9,10, 12, 14, 15, 17, 18, 20, 24, 28, 30, 31, 33, 34, 36, 40, 48,
1 56, 60, 62, 63, 65, 66, 68, 72, 80, 96, 112, 120, 124, 126, 127, 129, 130,
132, 136, 144, 160, 192, 224, 240, 248, 252, 254, 255

11, 13, 19, 21, 22, 23, 25, 26, 27, 29, 35, 37, 38, 39, 41, 42, 44, 46, 47,
49, 50, 52, 54, 55, 57, 58, 59, 61, 67, 69, 70, 71, 73, 74, 76, 78, 79, 81,
82, 84, 88, 92, 94, 95, 97, 98, 100, 104, 108, 110, 111, 113, 114, 116, 118,

2 119,121, 122, 123, 125, 131, 133, 134, 135, 137, 138, 140, 142, 143, 145,
146, 148, 152, 156, 158, 159, 161, 162, 164, 168, 176, 184, 188, 190, 191,
193, 194, 196, 200, 208, 216, 220, 222, 223, 225, 226, 228, 232, 236, 238,
239, 241, 242, 244, 246, 247, 249, 250, 251, 253

43, 45, 51, 53, 75, 77, 83, 85, 86, 87, 89, 90, 91, 93, 99, 101, 102, 103,
105, 106, 107, 109, 115, 117, 139, 141, 147, 149, 150, 151, 153, 154, 155,
157, 163, 165, 166, 167, 169, 170, 172, 174, 175, 177, 178, 180, 182, 183,
185, 186, 187, 189, 195, 197, 198, 199, 201, 202, 204, 206, 207, 209, 210,
212, 214, 215, 217, 218, 219, 221, 227, 229, 230, 231, 233, 234, 235, 237,
243, 245

4 171, 173, 179, 181, 203, 205, 211, 213

Minimum costs through factorization

5 =5x951=3x17,75=5x 15,85 =5 x 17,90 =2 x 9 x 5,93
3x31,99 =3x33,102=2x3%17,105 = Tx 15,150 = 2x 5% 15,153
2 9x 17,155 =5 x 31,1656 = 5 x 33,170 = 2 x H x 17,180 = 4 x 5
9,186 = 2x 3 x 31,189 =7 x 9,195 = 3 x 65,198 = 2 x 3 x 33,204
4x3x17,210=2xT7x15,217T=T7Tx 31,231 =7 x 33

171 = 3 x 57,173 = 8 + 165,179 = 51 + 128,181 = 1 + 180,211
14210,213 =3 x 71,205 =5 x 41,203 = 7 x 29

Reference: Digital Signal Processing with FPGAs by Uwe Meyer-Baese

> I

MATLAB® Design

The MATLAB code used in this example implements a simple FIR filter. The example also
shows a MATLAB test bench that exercises the filter.

8-46

Constant Multiplier Optimization to Reduce Area

design name = 'mlhdlc _csd';
testbench _name = 'mlhdlc csd tb';

1 Design: mlhdlc csd
2 Test Bench: mlhdlc csd tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc demo dir
mlhdlc temp dir

[tempdir 'mlhdlc csd'];

% create a temporary folder and copy the MATLAB files
cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp dir, 's');
mkdir(mlhdlc_temp dir);

cd(mlhdlc_temp dir);

copyfile(fullfile(mlhdlc demo dir, [design name,'.m*']), mlhdlc temp dir);
copyfile(fullfile(mlhdlc demo dir, [testbench name,'.m*']), mlhdlc temp dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_csd tb

Create a Fixed-Point Conversion Config Object

To perform fixed-point conversion, you need a 'fixpt' config object.
Create a 'fixpt' config object and specify your test bench name:
close all;

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc csd tb';

Create an HDL Code Generation Config Object

To generate code, you must create an 'hdl' config object and set your test bench name:

8-47

fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos’,

'matlabl

matlab:edit('mlhdlc_csd')
matlab:edit('mlhdlc_csd_tb')

8 Optimization

hdlcfg = coder.config('hdl");
hdlcfg.TestBenchName = 'mlhdlc csd tb';

Generate Code without Constant Multiplier Optimization
hdlcfg.ConstantMultiplierOptimization = 'None';
Enable the 'Unroll Loops' option to inline multiplier constants.

hdlcfg.LoopOptimization = 'UnrollLoops";
codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_csd

Examine the generated code.

329 —-- filtered output

330 ——'mlhdlc_ecsd FizxPt:40' y out = fi((h(1)*al + h({ 2)*a2) + (h(3)*a3 + h(4)*a4), 1, 14, 12, fm):
221 p22y_out_mul_temp <= (-2194) = al:

332 p22y_out_add cast <= resize(p22y out mul temp, 29):

333 p22y out_mul temp 1 <= (-1373) = a2;

334 p22y_out_add cast_1 <= resize (p22y_out mul temp 1, 23);

333 pd2y_out_add temp <= p22y_out_add cast + p2ly out_add cast_1;

336 p22y_out_add cast_2 <= resize(p22y out_add temp, 30);

337 p22y_out mul temp 2 <= 3319 * a3:;

338 p22y_out_add cast_3 <= resize(p22y out mul_ temp 2, 29);

339 p22y_out_mul_temp 3 <= 6658 ¢ ad:

340 p22y out add cast_4 <= resize (p22y out_mul temp 3, 29):;

341 p22y out_add temp 1 <= p22y out add cast_3 -+ p22y out_add cast_4;
342 p22y_out_add cast_5 <= resize(p22y out_add temp 1, 30);

343 pd2y_out_add temp 2 <= p2ly out_add cast_2 + pd2y_out_add cast_35;
344 ¥y out_ 1 <= p22y out_add temp 2 (26 DOWNTC 13);

345

Take a look at the resource report for adder and multiplier usage without the CSD
optimization.

Multipliers 4
Adders/Subtractors
Registers 23|
RAMs

Multiplexers 0

8-48

Constant Multiplier Optimization to Reduce Area

Generate Code with CSD Optimization
hdlcfg.ConstantMultiplierOptimization = 'CSD';
Enable the 'Unroll Loops' option to inline multiplier constants.

hdlcfg.LoopOptimization = 'UnrollLoops';
codegen -float2fixed fixptcfg -config hdlcfg mlhdlc csd

Examine the generated code.

329 —— filtered output

330 ——'mlhdlc csd FixPt:40' fi{(h{ 1)*al + h{ 2)*a2) + (h(3 })*a3 +{ h{ 4)*a4q), 1, 14, 12, fm):

331 —— CSD Encoding (2194) : Cost (Adders) = 3

332 22y out mul temp <= - (((resize(al & '0' & '0' & '0' &£ '0' & '0' & '0' & '0' & '0' & '0" & 'O' & '0', 28) + resize(al & '0' &
333 p22y out_add_cast resize (p22y out_mul temp, 29);

334 —— C5D Encoding (1 0101011001 '01; Cost (Adders) = 5

335 p22y_out_mul_temp 1 - ((({(resize(a2 & 'O" & "0" & '0' & '"0" & 'O' & "O' & 'Q" & '0' & '0' & '0O', 28) + resize(aZ2 & 'O' &
338 p22y_out_add cast_1 <= resize(p22y_out_mul_temp 1, 29);

337 p22y out_add temp <= p22y out_ add cast + p22y out_add cast_1:

338 22 resize (p22y_out_add_temp, 30);

339 0110100001'001"'; Cost (Adders) = 4

340 - = _ = ({(resize(a3 & '0O" & '0" &£ '0' &£ 'O" & 'O" & 'O" & 'O'" &£ '0" &£ 'O & 'O" &£ 'O', 28) + resize(ad £ 'O' &
341 p22y out_add cast 3 <= resize(p22y out mul temp 2, 29);

342 —— C5D Encoding (6658) : 011010 : Cost (Rdders) = 3

343 p22y out_mul_temp 3 <= ((resize(ad4 & '0' & '0' & '0O' & '0' & 'O' & 'O' & 'O' & 'O & '0' & 'O' & 'O & '0', 28) + resize(ad &
344 p22y_out_add cast_4 resize (p22y_out _mul_temp 3, 29);

345 p22y out_add temp 1 p22y out_add cast_3 + p22y out_add cast_ 4:

346 p22y out_add_cast_S5 resize (p22y_out_add temp 1, 30);

347 p22y_out_add temp_2 <= p22y_ out_add_cast_2 -+ p22y out_add cast_5;

348 v_out_1 <= p22v_out_add temp 2 (26 DOWNIOQ 13);

Examine the code with comments that outline the CSD encoding for all the constant
multipliers.

Look at the resource report and notice that with the CSD optimization, the number of
multipliers is reduced to zero and multipliers are replaced by shifts and adders.

Multipliers 0
Adders/Subtractors 24
Registers 23
RAMs

Multiplexers

8-49

8 Optimization

331

Generate Code with FCSD Optimization
hdlcfg.ConstantMultiplierOptimization = 'FCSD';
Enable the 'Unroll Loops' option to inline multiplier constants.

hdlcfg.LoopOptimization = 'UnrollLoops’;
codegen -float2fixed fixptcfg -config hdlcfg mlhdlc csd

Examine the generated code.

- fi
*ml vy out = Fi((a(1)*al + h{ 2 }*a2) + (n(3)*a3 + n(¢)*a4), 1, 1%, 12, fm):
p22y_out_fact
-- CSD Encoding (1097) (Rdders) = 3
p22y_out_mul_temp - (((resize(p22y_out_factor & '0' & '0' & '0' £ '0' & '0' & '0' & '0' & '0' & '0D' & '0', 28) + resize(p22y_out_factor & '0' & '0' & 'C
p22y_out_add cast <= resize(p22y out mul temp, 29);
-- CSD Encoding (1373) : 01010 1'01; Cost (Rdders) = 5
p22y_out_mul_temp_1 ~ {(((({resize(a2 & '0' & '0' & '0" & '0' & '0' & '0' £ '0' & '0' & '0' & '0', 28) - resize(a2 &£ '0D' & 'O & '0' £ '0D' & 'O & 'D' &
p22y_out_add cast_1 resize (p22y _out_mul temp 1, 29);
p22y_out_add temp 22y_out_add cast + p22y_out_add cast_1:
p22y_out_add cast, 22 t_add temp, 30):
10 01'; Cost (hdders) = 4
p22y_out_mul_temp_2 (((zxe 5 '0% & '0" & '0' & 'O0' & '0' £ '0' & 'O & '0' & 'O' & '0" & '0', 28) + resize(a3 & '0' & '0' & '0" & '0' & '0' & 'O' ¢
p22y_out_add cast_3 <= resize(p22y out_mul temp 2, 29);:
- for €658 = 2 X 3
— ng (2) 0
p22y_out_factor 1 H
-- CSD Encoding (1 01101 Cost (hdders) = 3
p22y_out_mul_temp_3 <= ((resize(p22y_out_factor_l & '0' & '0' & '0' &£ 'D' & '0' & '0' £ '0' & '0' & '0' & '0' & '0', 28) + resize(p22y_out_factor_l &

p22y out_add cast 4 <= resize(p22y out_mul _temp 3, 29);
p22y_out_add_temp 1 <= p22y_out_add_cast_3 + p22y_out_add _cast_4:

p22y_out_add cast_S < resize(p22y_out_add _temp_1, 30):
p22y_out_add temp 2 <= p22y out_add cast_2 - p22y out_add cast_5;
v _out_1 <= p22y_out_add_temp_2 (26 DOWNIO 13):

v_out_2 <= y_out_1;

Examine the code with comments that outline the FCSD encoding for all the constant
multipliers. In this particular example, the generated code is identical in terms of area
resources for the multiplier constants. However, take a look at the factorizations of the

constants in the generated code.

If you choose the 'Auto' option, HDL Coder will automatically choose between the CSD

and FCSD options for the best result.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc demo dir
mlhdlc temp dir
clear mex;

fullfile(matlabroot, 'toolbox',
[tempdir 'mlhdlc csd'];

8-50

"hdlcoder',

o'z

"hdlcoderdemos'

’

'matlabl

Constant Multiplier Optimization to Reduce Area

cd (mlhdlc_demo dir);
rmdir(mlhdlc_temp dir, 's');

8-51

HDL Workflow Advisor Reference

+ “HDL Workflow Advisor” on page 9-2
* “MATLAB to HDL Code and Synthesis” on page 9-7

9 HDL Workflow Advisor Reference

HDL Workflow Advisor

4\

=[] HDL Workflow Advisor L:}l e~
1

@ Define Input Types O Propose fraction lengths {o)]

ion: | jx F ™ Propose word lengths
__| Fixed-Point Conversion e Function: /= milhdlc_sfir ~ |ﬁ

Defautt word length: |14 Advanced = YERIFICATION HELP

0 Select Code Generation Target ~ -
. - -
1 HDL Code Generation DATA COLLECTION NAVIGATION TYPE PROPOSAL
= HDL Verification 20
L Verify with HDL Test Bench 21 %#codegen
- Verify with Cosimulation 22 |-|function [y out, delayed xout] = mlhdlc sfir(x in, h inl, h in2, h in3, h ing)
{8 Verify with FPGA-in-the-Loop| 23 | ¥ Symmetric FIR Filter
24
25 | ¥ declare a
26 | persistent
27 | if isempty
28 udl = 0; udé = 0; ud7 = 0; udg = 0
28 | end
30
31
32
| 33
< 34
Y 35 | % multiplier chain
2F | ml = h inl % al- m? = h in? & a?-
Variables | Function Replacements = Output
Variable Type Sim Min Sim Max Whol... Proposed Type Lo.. Max Diff
=
*_in double Mo
h_in1 double Mo
h_in2 double Mo
h_in3 double Mo
h_ind double Mo
=
y_out double MNo
delayed_xout double MNo
=
ud double Mo
ud2 double MNo

Overview

The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages of
the ASIC and FPGA design process, including converting floating-point MATLAB
algorithms to fixed-point algorithms. Some tasks perform code validation or checking;

9-2

HDL Workflow Advisor

others run the HDL code generator or third-party tools. Each folder at the top level of the
HDL Workflow Advisor contains a group of related tasks that you can select and run.

Use the HDL Workflow Advisor to:
* Convert floating-point MATLAB algorithms to fixed-point algorithms.

If you already have a fixed-point MATLAB algorithm, set Design needs conversion to
Fixed Point? to No to skip this step.

* Generate HDL code from fixed-point MATLAB algorithms.
* Simulate the HDL code using a third-party simulation tool.

* Synthesize the HDL code and run a mapping process that maps the synthesized logic
design to the target FPGA.

* Run a Place and Route process that takes the circuit description produced by the
previous mapping process, and emits a circuit description suitable for programming
an FPGA.

Procedures
Automatically Run Tasks
To automatically run the tasks within a folder:

1 Click the Run button. The tasks run in order until a task fails.

Alternatively, right-click the folder to open the context menu. From the context menu,
select Run to run the tasks within the folder.

2 If ataskin the folder fails:

a Fix the failure using the information in the results pane.
b Continue the run by clicking the Run button.

Run Individual Tasks
To run an individual task:

1 Click the Run button.

Alternatively, right-click the task to open the context menu. From the context menu,
select Run to run the selected task.

9-3

9 HDL Workflow Advisor Reference

2 Review Results. The possible results are:
Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

3 Ifrequired, fix the issue using the information in the results pane.
4 Once you have fixed a Warning or Failed task, rerun the task by clicking Run.

Run to Selected Task
To run the tasks up to and including the currently selected task:

1 Select the last task that you want to run.
2 Right-click this task to open the context menu.
3 From the context menu, select Run to Selected Task.

9-4

HDL Workflow Advisor

4\ HDL Coder Target

=] MATLAB Coder Workflow
- I Float-to-Fixed Workflow

-1 Verify Fixed-Point Design
MATLAB to HDL Workflow

i[Z] Verify Floating-Point Design
- Propose Fixed-Point Types
Generate Fixed-Point Code

Target | Ceding Stylel Clocks & Ports | Test Bench | Optimizations | Script Options

Target Selection

Language: :VHDL v:

Output Settings

- Synthesis

Run to Selected Task

ck HDL conformance

erate HDL

Run Logrc syricnesis
; Run Place and Route

[enerate HDL test bench

Generate EDA scripts

Target: Generic ASIC/FP...

Note If a task before the selected task fails, the Workflow Advisor stops at the failed task.

Reset a Task

To reset a task:

1 Select the task that you want to reset.

9 HDL Workflow Advisor Reference

2 Right-click this task to open the context menu.
3 From the context menu, select Reset Task to reset this and subsequent tasks.

Reset All Tasks in a Folder
To reset a task:

1 Select the folder that you want to reset.
2 Right-click this folder to open the context menu.

3 From the context menu, select Reset Task to reset the tasks this folder and
subsequent folders.

9-6

MATLAB to HDL Code and Synthesis

MATLAB to HDL Code and Synthesis

In this section...

“MATLAB to HDL Code Conversion” on page 9-7
“Code Generation: Target Tab” on page 9-7

“Code Generation: Coding Style Tab” on page 9-8
“Code Generation: Clocks and Ports Tab” on page 9-10
“Code Generation: Test Bench Tab” on page 9-12
“Code Generation: Optimizations Tab” on page 9-14
“Simulation and Verification” on page 9-16

“Synthesis and Analysis” on page 9-16

MATLAB to HDL Code Conversion

The MATLAB to HDL Workflow task in the HDL Workflow Advisor generates HDL code
from fixed-point MATLAB code, and simulates and verifies the HDL against the fixed-point
algorithm. HDL Coder then runs synthesis, and optionally runs place and route to
generate a circuit description suitable for programming an ASIC or FPGA.

Code Generation: Target Tab
Select target hardware and language and required outputs.
Input Parameters

Target

Target hardware. Select from the list:
Generic ASIC/FPGA
Xilinx
Altera
Simulation
Language
Select the language (VHDL or Verilog) in which code is generated. The selected
language is referred to as the target language.

Default: VHDL

9 HDL Workflow Advisor Reference

9-8

Check HDL Conformance
Enable HDL conformance checking.

Default: Off
Generate HDL
Enable generation of HDL code for the fixed-point MATLAB algorithm.

Default: On
Generate HDL Test Bench
Enable generation of HDL code for the fixed-point test bench.

Default: Off
Generate EDA Scripts

Enable generation of script files for third-party electronic design automation (EDA)
tools. These scripts let you compile and simulate generated HDL code and synthesize
generated HDL code.

Default: On

Code Generation: Coding Style Tab
Parameters that affect the style of the generated code.

Input Parameters

Preserve MATLAB code comments
Include MATLAB code comments in generated code.

Default: On
Include MATLAB source code as comments

Include MATLAB source code as comments in the generated code. The comments
precede the associated generated code. Includes the function signature in the
function banner.

Default: On
Generate Report
Enable a code generation report.

MATLAB to HDL Code and Synthesis

Default: Off
VHDL File Extension
Specify the file name extension for generated VHDL files.

Default: .vhd
Verilog File Extension
Specify the file name extension for generated Verilog files.

Default: .v
Comment in header
Specify comment lines in header of generated HDL and test bench files.

Default: None

Text entered in this field as a character vector generates a comment line in the
header of the generated code. The code generator adds leading comment characters
for the target language. When newlines or linefeeds are included in the text, the code
generator emits single-line comments for each newline.

Package postfix
HDL Coder applies this option only if a package file is required for the design.

Default: pkg
Entity conflict postfix
Specify the character vector to resolve duplicate VHDL entity or Verilog module
names in generated code.
Default: block
Reserved word postfix
Specify a character vector to append to value names, postfix values, or labels that are
VHDL or Verilog reserved words.
Default: rsvd
Clocked process postfix
Specify a character vector to append to HDL clock process names.

Default: process

9-9

9 HDL Workflow Advisor Reference

9-10

Complex real part postfix
Specify a character vector to append to real part of complex signal names.

Default: ' re'
Complex imaginary part postfix
Specify a character vector to append to imaginary part of complex signal names.

Default: ' im'

Pipeline postfix
Specify a character vector to append to names of input or output pipeline registers.

Default: ' pipe'
Enable prefix

Specify the base name as a character vector for internal clock enables and other flow
control signals in generated code.

Default: 'enb’

Code Generation: Clocks and Ports Tab
Clock and port settings
Input Parameters

Reset type
Specify whether to use asynchronous or synchronous reset logic when generating
HDL code for registers.
Default: Asynchronous
Reset Asserted level
Specify whether the asserted (active) level of reset input signal is active-high or
active-low.
Default: Active-high
Reset input port
Enter the name for the reset input port in generated HDL code.

Default: reset

MATLAB to HDL Code and Synthesis

Clock input port
Specify the name for the clock input port in generated HDL code.

Default: clk
Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Default: clk
Oversampling factor

Specify frequency of global oversampling clock as a multiple of the design under test
(DUT) base rate (1).

Default: 1
Input data type
Specify the HDL data type for input ports.

For VHDL, the options are:
* std logic vector

Specifies VHDL type STD LOGIC VECTOR
* signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
Default: std logic vector
For Verilog, the options are:

* In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Input
data type is disabled when the target language is Verilog.

Default: wire
Output data type
Specify the HDL data type for output data types.

For VHDL, the options are:

* Same as input data type

9-11

9 HDL Workflow Advisor Reference

9-12

Specifies that output ports have the same type specified by Input data type.
* std logic_vector

Specifies VHDL type STD LOGIC VECTOR
* signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED
Default: Same as input data type
For Verilog, the options are:

* In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Output
data type is disabled when the target language is Verilog.

Default: wire

Clock enable output port
Specify the name for the clock enable input port in generated HDL code.

Default: clk enable

Code Generation: Test Bench Tab
Test bench settings.

Input Parameters

Test bench name postfix

Specify a character vector appended to names of reference signals generated in test
bench code.

Default: ' tb’
Force clock
Specify whether the test bench forces clock enable input signals.

Default: On
Clock High time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input
signals high (1).

MATLAB to HDL Code and Synthesis

Default: 5
Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input
signals low (0).
Default: 5
Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Default: 2 (given the default clock period of 10 ns)
Setup time (ns)
Display setup time for data input signals.

Default: 0
Force clock enable
Specify whether the test bench forces clock enable input signals.

Default: On
Clock enable delay (in clock cycles)

Define elapsed time (in clock cycles) between deassertion of reset and assertion of
clock enable.

Default: 1
Force reset
Specify whether the test bench forces reset input signals.

Default: On
Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Default: 2
Hold input data between samples
Specify how long subrate signal values are held in valid state.

Default: On

9-13

9 HDL Workflow Advisor Reference

9-14

Initialize testbench inputs
Specify initial value driven on test bench inputs before data is asserted to device
under test (DUT).
Default: Off

Multi file testbench
Divide generated test bench into helper functions, data, and HDL test bench code
files.
Default: Off

Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file test
bench.
Default: ' data’

Test bench reference post fix
Specify a character vector to append to names of reference signals generated in test
bench code.
Default: ' ref'

Ignore data checking (number of samples)

Specify number of samples during which output data checking is suppressed.

Default: 0
Use fiaccel to accelerate test bench logging

To generate a test bench, HDL Coder simulates the original MATLAB code. Use the
Fixed-Point Designer fiaccel function to accelerate this simulation and accelerate
test bench logging.

Default: On

Code Generation: Optimizations Tab

Optimization settings

MATLAB to HDL Code and Synthesis

Input Parameters

Map persistent array variables to RAMs
Select to map persistent array variables to RAMs instead of mapping to shift
registers.
Default: Off

Dependencies:

* RAM Mapping Threshold
* Persistent variable names for RAM Mapping

RAM Mapping Threshold
Specify the minimum RAM size required for mapping persistent array variables to
RAMs.
Default: 256
Persistent variable names for RAM Mapping
Provide the names of the persistent variables to map to RAMs.

Default: None
Input Pipelining
Specify number of pipeline registers to insert at top level input ports. Can improve
performance and help to meet timing constraints.
Default: 0
Output Pipelining
Specify number of pipeline registers to insert at top level output ports. Can improve
performance and help to meet timing constraints.
Default: 0
Distribute Pipeline Registers

Reduces critical path by changing placement of registers in design. Operates on all
registers, including those inserted using the Input Pipelining and Output
Pipelining parameters, and internal design registers.

Default: Off

9-15

9 HDL Workflow Advisor Reference

9-16

Sharing Factor

Number of additional sources that can share a single resource, such as a multiplier.
To share resources, set Sharing Factor to 2 or higher; a value of 0 or 1 turns off
sharing.

In a design that performs identical multiplication operations, HDL Coder can reduce
the number of multipliers by the sharing factor. This can significantly reduce area.

Default: 0

Simulation and Verification
Simulates the generated HDL code using the selected simulation tool.

Input Parameters

Simulation tool

Lists the available simulation tools.

Default: None
Skip this step
Default: Off

Results and Recommended Actions

Conditions Recommended Action
No simulation tool available on system Add your simulation tool path to the
path. MATLAB system path, then restart

MATLAB. For more information, see

“Synthesis Tool Path Setup”.

Synthesis and Analysis

This folder contains tasks to create a synthesis project for the HDL code. The task then
runs the synthesis and, optionally, runs place and route to generate a circuit description
suitable for programming an ASIC or FPGA.

MATLAB to HDL Code and Synthesis

Input Parameters

Skip this step
Default: Off

Skip this step if you are interested only in simulation or you do not have a synthesis
tool.

Create Project
Create synthesis project for supported synthesis tool.
Description

This task creates a synthesis project for the selected synthesis tool and loads the project
with the HDL code generated for your MATLAB algorithm.

You can select the family, device, package, and speed that you want.

When the project creation is complete, the HDL Workflow Advisor displays a link to the
project in the right pane. Click this link to view the project in the synthesis tool's project
window.

Input Parameters

Synthesis Tool
Select from the list:

* Altera Quartus II

Generate a synthesis project for Altera Quartus II. When you select this option,
HDL Coder sets:

* Chip Family to Stratix II
e Device Name to EP2S60F1020C4

You can manually change these settings.
* Xilinx ISE

Generate a synthesis project for Xilinx ISE. When you select this option, HDL
Coder:

9-17

9 HDL Workflow Advisor Reference

9-18

* Sets Chip Family to Virtex4

* Sets Device Name to xc4vsx35
* Sets Package Name to ff6...
* Sets Speed Value to —. . .

You can manually change these settings.
Default: No Synthesis Tool Specified

When you select No Synthesis Tool Specified, HDL Coder does not generate a
synthesis project. It clears and disables the fields in the Synthesis Tool Selection
pane.

Chip Family
Target device family.

Default: None

Device Name

Specific target device, within selected family.

Default: None
Package Name
Available package choices. The family and device determine these choices.

Default: None
Speed Value

Available speed choices. The family, device, and package determine these choices.

Default: None

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails to create project. Read the error message returned by
synthesis tool, then check the synthesis tool
version, and check that you have write
permission for the project folder.

MATLAB to HDL Code and Synthesis

Conditions Recommended Action

Synthesis tool does not appear in dropdown [Add your synthesis tool path to the
list. MATLAB system path, then restart
MATLAB. For more information, see
“Synthesis Tool Path Setup”.

Run Logic Synthesis

Launch selected synthesis tool and synthesize the generated HDL code.

Description
This task:

* Launches the synthesis tool in the background.

* Opens the previously generated synthesis project, compiles HDL code, synthesizes the
design, and emits netlists and related files.

» Displays a synthesis log in the Result subpane.

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails when running place and |Read the error message returned by the
route. synthesis tool, modify the MATLAB code,
then rerun from the beginning of the HDL
Coder workflow.

Run Place and Route

Launches the synthesis tool in the background and runs a Place and Route process.

Description
This task:

* Launches the synthesis tool in the background.

* Runs a Place and Route process that takes the circuit description produced by the
previous mapping process, and emits a circuit description suitable for programming
an FPGA.

» Displays a log in the Result subpane.

9-19

9 HDL Workflow Advisor Reference

Input Parameters

Skip this step

If you select Skip this step, the HDL Workflow Advisor executes the workflow, but
omits the Perform Place and Route, marking it Passed. You might want to select Skip
this step if you prefer to do place and route work manually.

Default: Off

Results and Recommended Actions

Conditions Recommended Action
Synthesis tool fails when running place and |Read the error message returned by the
route. synthesis tool, modify the MATLAB code,

then rerun from the beginning of the HDL
Coder workflow.

9-20

HDL Code Generation from
Simulink

21

Model Design for HDL Code
Generation

* “Signal and Data Type Support” on page 10-2

* “Use Simulink Templates for HDL Code Generation” on page 10-8

* “Generate DUT Ports for Tunable Parameters” on page 10-22

* “Generate Parameterized Code for Referenced Models” on page 10-26

* “Using Matrix Multiply Block for HDL Code Generation” on page 10-28

* “Generating HDL Code for Subsystems with Array of Buses” on page 10-30
* “Generate HDL Code for Blocks Inside For Each Subsystem” on page 10-34
* “Model and Debug Test Point Signals with HDL Coder™” on page 10-40

* “Allocate Sufficient Delays for Floating-Point Operations” on page 10-50

* “Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials”
on page 10-57

* “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

* “Numeric Considerations with Native Floating-Point” on page 10-71

* “Latency of Floating Point Operators” on page 10-79

* “Latency Considerations with Native Floating Point” on page 10-85

* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94
» “Verify the Generated Code from Native Floating-Point” on page 10-101

» “Simulink Blocks Supported with Native Floating-Point” on page 10-106

* “Supported Data Types and Scope” on page 10-111

* “Verilog HDL Import: Import Verilog Code and Generate Simulink Model”
on page 10-115

* “Supported Verilog Constructs for HDL Import” on page 10-118
* “Limitations of Verilog HDL Import” on page 10-124

10 Model Design for HDL Code Generation

Signal and Data Type Support

In this section...

“Buses” on page 10-2
“Enumerations” on page 10-2
“Matrices” on page 10-3

“Unsupported Signal and Data Types” on page 10-6

HDL Coder supports code generation for Simulink signal types and data types with a few
special cases.

Buses

You can generate HDL code for designs that use virtual and nonvirtual buses. For
example, you can generate code for designs that contain:

* DUT subsystem ports connected to buses.
» Simulink and Stateflow® blocks that support buses and HDL code generation.

Bus Support Limitations

Buses are not supported in the IP Core Generation workflow. In addition, you cannot
generate code for designs that use:

* A Black box model reference connected to a bus.
* Abus input to a Delay block with nonzero Initial condition.

Enumerations

You can generate code for Simulink, MATLAB, or Stateflow enumerations within your
design.

Requirements

* The enumeration values must be monotonically increasing.

* The enumeration strings must have unique names and must not use a reserved
keyword in the Verilog or VHDL language.

10-2

Signal and Data Type Support

If your target language is Verilog, all enumeration member names must be unique
within the design.

Restrictions

Enumerations at the top-level DUT ports are not supported with the following workflows
or verification methods:

IP Core Generation workflow

FPGA Turnkey workflow

Simulink Real-Time FPGA I/O workflow
Customization for the USRP Device workflow
FPGA-in-the-loop

HDL Cosimulation

Matrices

You can use matrix types with these blocks in your design:

HDL Coder Block Library Supported blocks

Discontinuities These blocks are supported:

¢ Dead Zone
* Relay
e Saturation

Discrete These blocks are supported:

* Delay

* Memory

* Tapped Delay

e Unit Delay

* Unit Delay Enabled Synchronous

* Unit Delay Enabled Resettable Synchronous
* Unit Delay Resettable Synchronous

* Zero-Order Hold

10-3

10 Model Design for HDL Code Generation

HDL Coder Block Library Supported blocks
HDL Floating Point Operations The Rounding Function block is supported.
HDL Operations Blocks in this library are not supported.
HDL RAMs Blocks in this library are not supported.
HDL Subsystems Blocks in this library are not supported.
Logic and Bit Operations These blocks are supported:

* Bit Clear

* Bit Concat

* Bit Reduce

* Bit Rotate

* Bit Set

* Bit Shift

* Bit Slice

* Extract Bits

* Logical Operator

¢ Relational Operator
o Shift Arithmetic

Lookup Tables Blocks in this library are not supported.

10-4

Signal and Data Type Support

HDL Coder Block Library

Supported blocks

Math Operations

These blocks are supported:

Abs

Add

Assignment

Bias

Complex to Real-Imag
Gain

Product

Matrix Multiply
Matrix Concatenate
Real-Imag to Complex
Reshape

Sign

Sum

Transpose

Unary Minus

Model Verification

All blocks in this library are supported.

Model-Wide Utilities

The DocBlock is supported. The Model Info
block does not support matrix data types.

Ports & Subsystems

The Subsystem block is supported.

Signal Attributes

These blocks are supported:

Data Type Conversion
Data Type Duplicate
Probe

Rate Transition
Signal Conversion
Signal Specification

10-5

10 Model Design for HDL Code Generation

10-6

HDL Coder Block Library

Supported blocks

Signal Routing

These blocks are supported:

* Mux

* Multiport Switch
* Selector

* Switch

Sources

These blocks are supported:

¢ Constant
¢ Enumerated Constant
* Inport

Sinks

These blocks are supported:

* Display

e Qutport

* Scope

* To Workspace
* To File

* XY Graph

User-Defined Functions

The MATLAB Function block is supported.

The code generator does not support matrix types at the interfaces of the Subsystem that
you generate HDL code for. Use a Reshape block to convert the matrix input to a 1-D
array at the interface. Inside the Subsystem, use another Reshape block that converts the
1-D array back to the matrix type with the dimensionality that you specified.

Unsupported Signal and Data Types

Variable-size signals are not supported for code generation.

See Also

See Also

Related Examples
. “Generating HDL Code for Subsystems with Array of Buses” on page 10-30

More About
. “Signal Types” (Simulink)
. “About Data Types in Simulink” (Simulink)

. “Composite (Bus) Signals” (Simulink)
. “Use Enumerated Data in Simulink Models” (Simulink)
. “Enumerated Data” (Stateflow)

10-7

10 Model Design for HDL Code Generation

Use Simulink Templates for HDL Code Generation

In this section...

“Create Model Using HDL Coder Model Template” on page 10-8
“HDL Coder Model Templates” on page 10-9

HDL Coder model templates in Simulink provide you with design patterns and best
practices for models intended for HDL code generation. Models you create from one of
the HDL Coder model templates have their configuration parameters and solver settings
set up for HDL code generation. To configure an existing model for HDL code generation,
use hdlsetup.

Create Model Using HDL Coder Model Template

To model hardware for efficient HDL code generation, create a model using an HDL
Coder model template.

1 Open the Simulink Start Page. In the MATLAB Home tab, select the Simulink button.
Alternativelty, at the command line, enter:
simulink

2 Inthe HDL Coder section, you see templates that are preconfigured for HDL code
generation. Selecting the template opens a blank model in the Simulink Editor. To
save the model, select File > Save As.

3 To open the Simulink Library Browser and then open the HDL Coder Block Library,
select the Library Browser button in the Simulink Editor. Alternatively, at the
command line, enter

slLibraryBrowser

To filter the Simulink Library Browser to show the block libraries that support HDL
code generation, use the hd1lib function:

hdllib

10-8

Use Simulink Templates for HDL Code Generation

HDL Coder Model Templates
Complex Multiplier

The Complex Multiplier template shows how to model a complex multiplier-accumulator
and manually pipeline the intermediate stages. The hardware implementation of complex
multiplication uses four multipliers and two adders.

The template applies the following best practices:
* In the Configuration Parameters dialog box, in HDL Code Generation > Global

Settings, Reset type is set to Synchronous.

* To improve speed, Delay blocks, which map to registers in hardware, are at the inputs
and outputs of the multipliers and adders.

» To support the output data of a full-precision complex multiplier, the output data word
length is manually specified to be (operand word length *2) + 1.

For example, in the template, the operand word length is 18, and the output word
length is 37.

SL_Comgplex Muliplier

SR B4

- BRI

HOL_Complax_Kullipher

Caopyrighl 2014-2016 The Math'Works, Inc.

10-9

10 Model Design for HDL Code Generation

afcta_Ent7
a_Ent7 ic)| _/ Hre
= W — - fix36_En34 1 |efs3s_Enzd
m snx18_Ent7 x = z =
—
X_im
sty Jss7 Ensa
—
sfix1d_Ent7
P e el ™ = Y s1ix36_Enza o |enix36_Ensa
—1 Y 4 |etix18_Eni7|(c) / *® = z =
G —w =,
¥_im
¥ — m
sx18_En]7 —
__ |shes7 B[7 |afixaT)
b e o
z

slix36_En3d 1 |36 _En3d

::'jiﬂ:- six3T_En34
F4

slixa6_Ensd 3 |snx3a_En3d
= — z —

MATLAB Arithmetic

The MATLAB Arithmetic template contains MATLAB arithmetic operations that infer
DSP48s in hardware.

10-10

Use Simulink Templates for HDL Code Generation

Copyright 2014-2016 The MathWorks, Ino.

10-11

10 Model Design for HDL Code Generation

|Pauntitled P Pa|EML_DSP48_Patterns

ul @ |—b ul
In5) }?;l y—(2) Cr—e 4 J}—)
Qut3 @ Ba u3 fen Qut4

Imo mi_mul12 ml_muladd

u ul

PP NG PR N

% s fen Quts 2 outt
ma ml_mulsub ml_mul_acc
o
Int5 , 4)
Go— = ot
M7 ml_add1&

For example, the ml_mul acc MATLAB Function block shows how to write a multiply-
accumulate operation in MATLAB. hdlfimath on page 29-33 applies fixed-point math
settings for HDL code generation.

function y = fcn(ul, u2)

design of a 6x6 multipler
same reset on inputs and outputs
followed by an adder

o° o o°

nt = numerictype(0,6,0);
nt2 = numerictype(0,12,0);
fm = hdlfimath;

persistent ul reg u2 reg mul reg add reg;
if isempty(ul reg)
ul reg = fi(0, nt, fm);

u2 reg fi(0, nt, fm);
mul reg = fi(0, nt2, fm);
add reg = fi(0, nt2, fm);

end

10-12

Use Simulink Templates for HDL Code Generation

|Pa|untitled

mul = mul reg;
mul reg = ul reg * u2 reg;

add = add_reg;

add reg(:) = mul+add;
ul reg = ul;

u2 reg = u2;

y = add;

ROM

The ROM template is a design pattern that maps to a ROM in hardware.
The template applies the following best practices:

* At the output of the lookup table, there is a Delay block with ResetType = none.

» The lookup table is structured such that the spacing between breakpoints is a power
of two.

Using table dimensions that are a power of two enables HDL Coder to generate shift
operations instead of division operations. If necessary, pad the table with zeros.

* The number of lookup table entries is a power of two. For some synthesis tools, a
lookup table that has a power-of-two number of entries maps better to ROM. If
necessary, pad the table with zeros.

=[3\\
[//

Gain Delay L .+
— -

Subtract

¥
I\lI
[4%)
L4

Scope

)

> uintd *(In1 Cut1

Countertimied pata Type Conversien _

LUT_BlockRAM_ReadOnly

10-13

10 Model Design for HDL Code Generation

Pafuntitied B [Pa|LUT_BlockRAM_ReadOnly B [BaHDL ROM

1-D T[k]
uinta Lint16 Lint16 :
In1 Cut1
ResetMoneDelay
Direct Lookup
Table (n-0)
¥=(0:99);

Scale_by_3 LUT=3*x
pad=2*nextpowZ(length(Scale_by_3 LUT)HengthiScale_by_3 LUT);
Scale_by_3_LUT_pad=[Scale_by_3_LUT.zeros{pad,1]];

Register

The Register template shows how to model hardware registers:

* In Simulink, using the Delay block.
» In MATLAB, using persistent variables.

This design pattern also shows how to use cast to propagate data types automatically.

10-14

Use Simulink Templates for HDL Code Generation

urlt'tied 4

[]
hf:\ Scope

A

Y

_|.|r|_r|'r| > Convert P n1 eml_d —p
9

Counter
Free-Running

Assertion

UnitDelay

unﬁﬂed » L.Ir'|i1:DneIE|1,-I

T
¢

Unit Delay

The MATLAB code in the MATLAB Function block uses a persistent variable to model the
register.

function y = fcn(u)
% Unit delay implementation that maps to a register in hardware

persistent u d;
if isempty(u d)

10-15

10 Model Design for HDL Code Generation

% defines initial value driven by unit delay at time step 0
ud = cast(0, 'like', u);
end

% return delayed input from last sample time hit
= u d;

<

% store the current input
ud=u;

SRL

The SRL template shows how to implement a shift register that maps to an SRL16 in
hardware. You can use a similar pattern to map to an SRL32.

unh’ﬂedl 4
Lg
0 | addr
Jf'ﬂ Constant >
Counter SRL EML Scope
Free-Running -
L
addr
d_out »
P d in
dyn_shift_reg_SL Scopel

10-16

Use Simulink Templates for HDL Code Generation

P |untitled » |[Pa|SRL_EML

(1 }) | addr

addr
S 4 D
4] f
Delays | tdelay cn dout

din

Tapped Delay select_tap

Tomap to SRL16/32:

- Set ResetType = none for the tapped delay

-Us= ML fcn block to create mux logic

- Flatten hierarchy for the subsydem to inline the ML code

- Do not use "include cument input in output vector” option for the tapped delay

In the shift register subsystem, the Tapped Delay implements the shift operation, and the
MATLAB Function, select tap, implements the output mux.

In select tap, the zero-based address, addr increments by 1 because MATLAB indices
are one-based.

function dout = fcn(addr, tdelay)
s#codegen

addrl = fi(addr+1,0,5,0);
dout = tdelay(addrl);

In the generated code, HDL Coder automatically omits the increment because Verilog and
VHDL are zero-based.

The template also applies the following best practices for mapping to an SRL16 in
hardware:

10-17

10 Model Design for HDL Code Generation

» For the Tapped Delay block:
* In the Block Parameters dialog box, Include current input in output vector is
not enabled.
* In the HDL Block Properties dialog box, ResetType is set to none.
» For the Subsystem block, in the HDL Block Properties dialog box, FlattenHierarchy
is set to on.
Simulink Hardware Patterns

The Simulink Hardware Patterns template contains design patterns for common hardware
operations:

* Serial-to-parallel shift register

* Detect rising edge

* Detect falling edge

* SR latch

* RS latch

unﬁﬂedz 4

(e()20)

o]
=
w

‘

2
=

(

Q
=%
&

Subsystem

10-18

Use Simulink Templates for HDL Code Generation

unt’ﬂed » Subsystem »

@—P Serial Parallel 4@

I Out1
shift_reg

D Rising D Faling
out2 In4

Outd

detect rising_edge detect _falling_edge

Q 3 Cor—R aQ 5
s

Oouts

]

InS SR_latch In7 RS_latch

For example, the design patterns for rising edge detection and falling edge detection:

untitied » Subsystern » detect_rising_edge

Rising

Prev
NOT AND

10-19

10 Model Design for HDL Code Generation

@unﬁﬁed P [Pa|Subsystem M |Pa|detect_faling_edge

NOT

Falling

Prev

State Machine in MATLAB

The State Machine in MATLAB template shows how to implement Mealy and Moore state
machines using the MATLAB Function block.

10-20

See Also

untiﬂedS »

| I

Random NumQ -
Relational
Operator
0
Constant

moore_fsm

]| E—

|
Random Num1

Relational
Operatort

1

Constant

mealy_fsm

Display

Scope

D

Display1

=

-

Scopet

To learn more about best practices for modeling state machines, see “Model a State

Machine for HDL Code Generation” on page 3-5.

See Also
hdlsetup | makehdl

More About
. “Create HDL-Compatible Simulink Model”

. “Design Guidelines for the MATLAB Function Block” on page 29-33

. “Hardware Modeling with MATLAB Code”

10-21

10 Model Design for HDL Code Generation

Generate DUT Ports for Tunable Parameters

10-22

In this section...

“Prerequisites” on page 10-23

“Create and Add Tunable Parameter That Maps to DUT Ports” on page 10-23
“Generated Code” on page 10-23

“Limitations” on page 10-24

“Use Tunable Parameter in Other Blocks” on page 10-24

Tunable parameters that you use to adjust your model behavior during simulation can
map to top-level DUT ports in your generated HDL code. HDL Coder generates one DUT
port per tunable parameter.

You can generate a DUT port for a tunable parameter by using it in one of these blocks:

* Gain

* Constant

* MATLAB Function

* MATLAB System

* Chart

» Truth Table

* State Transition Table

These blocks with the tunable parameter can be at any level of the DUT hierarchy,
including within a model reference.

You cannot use HDL cosimulation with a DUT that uses tunable parameters in any of
these blocks. If you use a tunable parameter in a block other than these blocks, code is
generated inline and does not map to DUT ports. To use the value of a tunable parameter
in a Chart or Truth Table block, see “Use Tunable Parameter in Other Blocks” on page 10-
24,

You can define and store the tunable parameters in the base workspace or a Simulink
data dictionary. However, a Simulink data dictionary provides more capabilities. For
details, see “What Is a Data Dictionary?” (Simulink).

Generate DUT Ports for Tunable Parameters

Prerequisites

* The Simulink compiled data type for all instances of a tunable parameter must be the
same.

* Simulink blocks that use tunable parameters with the same name must operate at the
same data rate.

To learn more about Simulink compiled data types, see “Control Block Parameter Data
Types” (Simulink).

Create and Add Tunable Parameter That Maps to DUT Ports

To generate a DUT port for a tunable parameter:
1 Create a tunable parameter with StorageClass set to ExportedGlobal.

For example, to create a tunable parameter, myParam, and initialize it to 5, at the
command line, enter:

myParam = Simulink.Parameter;
myParam.Value = 5;
myParam.CoderInfo.StorageClass = 'ExportedGlobal';

Alternatively, using the Model Explorer, you can create a tunable parameter and set
Storage Class to ExportedGlobal. See “Create Data Objects from Built-In Data
Class Package Simulink” (Simulink).

2 Inyour Simulink design, use the tunable parameter as the:

* Constant value in a Constant block.
* Gain parameter in a Gain block.
* MATLAB function argument in a MATLAB Function block.

Generated Code

The following VHDL code is an example of code that HDL Coder generates for a Gain
block with its Gain field set to a tunable parameter, myParam. You see that the code
generator creates a DUT port and adds a comment to indicate that the port corresponds
to a tunable parameter.

ENTITY s IS
PORT(Inl : IN std logic vector (15 DOWNTO @); -- sfix16 En5

10-23

10 Model Design for HDL Code Generation

10-24

myParam : IN std logic_vector (15 DOWNTO 0); -- sfix16 En5 Tunable port

Outl : OUT std logic vector(31 DOWNTO 0) -- sfix32 Enl0
);
END s;

ARCHITECTURE rtl OF s IS

-- Signals

SIGNAL myParam signed : signed(15 DOWNTO 0); -- sfix16 En5

SIGNAL Inl signed : signed(15 DOWNTO 0); -- sfix16 En5

SIGNAL Gain outl : signed(31 DOWNTO 0); -- sfix32 Enl0
BEGIN

myParam signed <= signed(myParam);

Inl signed <= signed(Inl);

Gain outl <= myParam signed * Inl signed;
Outl <= std logic vector(Gain outl);

END rtl;

Limitations

Make sure that the “Use trigger signal as clock” on page 16-50 check box is left cleared
by default.

Use Tunable Parameter in Other Blocks

To use the value of a tunable parameter in a Chart or Truth Table block:

1 Create the tunable parameter and use it in a Constant block. on page 10-23
2 Add an input port to the block where you want to use the tunable parameter.
3 Connect the output of the Constant block to the new input port.

See Also

See Also

Related Examples
. “Generate Parameterized Code for Referenced Models” on page 10-26

10-25

10 Model Design for HDL Code Generation

Generate Parameterized Code for Referenced Models

In this section...

“Parameterize Referenced Model for HDL Code Generation” on page 10-26
“Restrictions” on page 10-26

To generate parameterized code for referenced models, use model arguments. You can
use model arguments in a masked or unmasked Model block.

HDL Coder generates a single VHDL entity or Verilog module for the referenced model,
even if the DUT has multiple instances of the referenced model. In the generated code,
each model argument is a VHDL generic or a Verilog parameter.

Parameterize Referenced Model for HDL Code Generation

1 In the referenced model, create one or more model arguments.
To learn how to create a model argument, see “Specify a Different Value for Each
Instance of a Reusable Model” (Simulink).

2 In the referenced model, use each model argument parameter in a Gain or Constant
block.

3 Inthe DUT, for each model reference, in the Model arguments table, enter values
for each model argument.

Alternatively, create a model mask for the referenced model. In the DUT, for each
model reference, enter values for each model argument.

4 Generate code for the DUT.

Restrictions

Model argument values:

e Must be scalar.
* Cannot be complex.
e Cannot be enumerated data.

10-26

See Also

See Also

Related Examples

. “Generate Reusable Code for Atomic Subsystems” on page 27-19
. “Generate DUT Ports for Tunable Parameters” on page 10-22
More About

. “Specify a Different Value for Each Instance of a Reusable Model” (Simulink)
. “Model Referencing for HDL Code Generation” on page 27-2

10-27

10 Model Design for HDL Code Generation

Using Matrix Multiply Block for HDL Code Generation

10-28

This example shows how to use matrix types in HDL Coder™. Open this model
hdlcoder matrix multiply. HDL Coder™ does not support matrix types at the
interfaces of the Subsystem that you generate HDL for. The example uses a Reshape
block to convert the matrix input to a 1-D array at the DUT Subsystem interface.

open_system('hdlcoder matrix multiply')
set param('hdlcoder matrix multiply', 'SimulationCommand', 'update')
sim('hdlcoder matrix multiply"')

I Tsingle [2x2] . single (4}
- [% - r.:'
out single (4) o 43
— I
single [2x2] /U single (4) iz -
o) | I,
L7 Bl 4 =
i Teingle [2:2] single (4)
N vlis
i | [3x2] 4
Outz single (4) o 43
u L4
= = 4 _22
single [2x2] | U asingle (4} plind =0
o) L L
L7 F] 4
|1|_-|‘| ouT

If you open the DUT Subsystem, you see two Matrix Multiply blocks. The Reshape blocks
convert the 1-D array back to the 2x2 matrices. One Matrix Multiply block computes the

product of two 2x2 matrices with fixed-point inputs. The second Matrix Multiply block

computes the product of two 2x2 matrices with single inputs in the Native Floating

Point mode.

open_system('hdlcoder matrix multiply/DUT")

Using Matrix Multiply Block for HDL Code Generation

single (4]
@ 3
single (4]
e)r—
3

single (4)
GoOr—
4
single (4)
3)
(3 4

single [2:2] i
n
[2xd] single [2x2 single (4)
Ot ole []'f“'[:' ale (4) %:1
single [212] o [242] 4
n
[2x2]
single [2x2] i
n
[2x2] single [2x2 single (4)
Ot gle []_EJ[:_ gle (4) ":2
single [2x2] i [242] 4
.
[2x2)

If you generate HDL code for the DUT Subsystem and open the generated model, you see
that the code generator implements the matrix multiplication using a tree of multipliers
and adders. In this example, the Matrix Multiply blocks use the default Fully Parallel
mode for the DotProductStrategy HDL block property. Be aware that multiplication of
larger matrices can result in a significant resource usage on the target device.

10-29

10 Model Design for HDL Code Generation

Generating HDL Code for Subsystems with Array of

Buses

10-30

In this section...

“How HDL Coder Generates Code for Array of Buses” on page 10-30
“Array of Buses Limitations” on page 10-33

An array of buses is an array whose elements are buses. Each element in an array of
buses must be nonvirtual and must have the same data type.

The array of buses represents structured data compactly. The array:

* Reduces the model complexity

* Reduces maintenance by organizing and routing signals in your Simulink model for
vectorized algorithms

For more information, see “Combine Buses into an Array of Buses” (Simulink).

You can generate HDL code for virtual and nonvirtual blocks that Simulink supports with
an array of buses. For more information, see “Use Arrays of Buses in Models” (Simulink).

How HDL Coder Generates Code for Array of Buses

HDL Coder expands the array of buses in your Simulink model into the corresponding
scalar signals in the generated code.

This Simulink model has an array of buses signal at the DUT interface.

Generating HDL Code for Subsystems with Array of Buses

uint1f
1
a
Constant Busl — Display
2 -—
int32 2
- Selector
Constant1 Display1
Bus1 {%{
Eeww s e wwk] Cuti
2
wnt16
] —
8 H ouT _l
Constant2 et : Wector LR E,_f‘. o
L 4o Concatenate 2 __I
. Selectort
Constant3

Display4

The array of buses combines two nonvirtual bus elements, each having scalars a and b of
types uint16 and int32 respectively.

-

= Bus Editor - Manage Bus Objects in the Base Workspace | = || = || 3 |

Hig B-] B0 % B2 o X | Fiiter:[oy Bus Name - . .

Name DataType Complexity Dimensions DimensionsMode Simulink.Bus: Busl

4 E Base Workspace

—_ int16 | 1 Fixed i
N == a uin real e Properties =
—b int32 real 1 Fixed
= 4 Name: Busl
— b
Code generation options
Data scope: | Auto - E
Header file:

Alignment: -1

Description:

] 11 | ¥

4 m | 3

10-31

10 Model Design for HDL Code Generation

:1 Bus1 (2) N :
2

10-32

In1

The resulting HDL code expands the array of buses into scalars, and contains four scalar
input and output ports.

J

o
=4
—

Generate Code

—>

w|
RS

Outt uint16
In3 QOut3
int32
€D
In4 Outd

In the generated code, the array of bus expansion results in four scalar signals at the
input and output ports. For the first bus object, the input ports are In 1 aand In 1 b.
For the second bus object, they are In 2 aand In 2 b. At the output, for the first bus
object, they are Out 1 aand Qut 1 b. For the second bus object, they are Out 2 a and
Out 2 b.

ENTITY DUT IS

PORT(Inl 1 a IN std logic_vector (15 DOWNTO 0); uintl6
Inl1b IN std logic vector(31 DOWNTO 0); int32
Inl 2 a IN std logic vector (15 DOWNTO 0); uintl6
Inli2b IN std logic vector(31 DOWNTO 0); int32
Outl 1 a OUT std logic_vector(15 DOWNTO 0); uintl6
Outl 1 b OUT std logic_vector(31 DOWNTO 0); int32
Outl 2 a OUT std logic_vector(15 DOWNTO 0); uintl6
Outl 2 b OUT std logic_vector(31 DOWNTO 0) int32
)i

END DUT;

HDL Coder generates code in accordance with the order in which you specify the bus
elements and the array elements in your Simulink model. If you specify the VHDL target
language for your Simulink model that contains a bus object with arrays, HDL Coder
preserves the arrays in the generated code, and does not expand into scalars.

See Also

Array of Buses Limitations
* Do not use the array of buses inside other data types. You cannot use a bus signal that
contains an array of buses.

* MATLAB System and MATLAB Function blocks that contain System Objects are not
supported with an array of buses.

See Also

More About

. “Signal and Data Type Support” on page 10-2
. “Signal Types” (Simulink)

. “About Data Types in Simulink” (Simulink)

. “Composite (Bus) Signals” (Simulink)
. “Use Enumerated Data in Simulink Models” (Simulink)
. “Enumerated Data” (Stateflow)

10-33

10 Model Design for HDL Code Generation

Generate HDL Code for Blocks Inside For Each
Subsystem

10-34

This example shows how to use blocks inside a For Each Subsystem in your Simulink™
model, and then generate HDL code.

Why Use a For Each Subsystem?

To repeatedly perform the same algorithm on individual elements or subarrays of the
input signals, use the For Each Subsystem block. The set of blocks within the Subsystem
replicate the algorithm that is applied to individual elements or equally divided subarrays
of the input signals. Using the For Each Subsystem block, you do not have to create and
connect replicas of a Subsystem block to model the same algorithm. The For Each
Subsystem:

* Supports vector processing, which reduces the simulation time of your model. You can
process individual elements or subarrays of an input signal simultaneously.

* Improves code readability by using a for-generate loop in the generated HDL code.
The for-generate loop reduces the number of lines of code, which can otherwise result
in hundreds of lines of code for large vector signals.

* Supports HDL code generation for all data types, Simulink™ blocks, and predefined
and user-defined system objects.

* Supports optimizations on and inside the block, such as resource sharing and
pipelining. The parallel processing capability of the For Each Subsystem block
combined with the optimizations that you specify produces high performance on the
target FPGA device.

Modeling With the For Each Subsystem

Open the foreach subsystem examplel model. You see this simple algorithm modeled
inside a For Each Subsystem block.

Generate HDL Code for Blocks Inside For Each Subsystem

For Each

For Each

> >
o X » z1 » bb o
>
GCB

When you simulate the model, you see that the input signals Inl and In3 are partitioned
into subarrays. To see this partitioning, double-click the For Each block. The block
parameters Partition Dimension and Partition Width specify the dimension through
which the input signal is partitioned and the width of each partition slice respectively.
Based on the input signal sizes and the partitioning that you specify, the For Each
Subsystem determines the number of iterations that it requires to compute the algorithm.

In this example, the input signals Inl and In3 of size 8 are partitioned into four subarrays,
each of size 2. The input signal In2 of size 2 is not partitioned. To compute the algorithm,
the For Each Subsystem requires four iterations, with each iteration repeating the
algorithm on each of the four subarrays of Inl and In3.

The For Each Subsystem simplifies modeling of vectorized algorithms. This figure shows
how you can model the same algorithm by creating multiple subsystem instances. This
model can become graphically complex and difficult to maintain.

10-35

10 Model Design for HDL Code Generation

In1

ufixBE_En31 [1:2]
In2 Cut

In3

Subsystem_instance

uint16 [1x2)

In
Lint6 [x2] | | |
i

ufxBE_En31 [1x2]
Lint16 [1x2] +—1_> In2 Outi
2]

uint16 [1x8)

- In3
Mz]
uinti6 [1x2) Subsystemn_instance?
)
In2
— Inl
uint16 [1x2) 1]
1 ufixfi_En31 [1x2] iz
— In2 Ot
=5 uint16 [1x8] ‘ E]
: In3
In3 :hﬂ.ﬂ n
Subsystemn_instance3

ti

UfixGE_En31 [1:x2]
4 In2 Qi

In3

1]

Subsystem_instance4

Generate HDL Code

To generate HDL code, in the foreach subsystem examplel model, right-click the
Subsystem Foreach block and select HDL Code > Generate HDL for Subsystem.

To see the generated HDL code for the Subsystem Foreach block, in the MATLAB™
Command Window, click the Subsystem Foreach.vhd file. In the VHDL code snippet,
you see this for-generate loop in the HDL code.This loop creates four subsystem
instances, with each instance performing the algorithm on size 2 subarrays of inputs Inl
and In3.

10-36

Generate HDL Code for Blocks Inside For Each Subsystem

BEGIN
—— «“232x/For Each Subsystem
GEM LABEL: FOR k IN O TO 3 GEWERLTE
u For Each Jubsystem : For Each Jubsystem
PORT MAFP| clk => clk,
reset => reset,
enb => clk enshle,

Inl = Inl(2*k T2 2*(k+1) - 1), —-- uintle [Z]

Ins == Inz, -—-- uintlc [Z]

In3d => In3(2*k TO 2% (k+1) - 1), —-- uintle [Z]

Cutl => For Each Subsystem outl{2*k TO 2% (k+1)] - 1)

1z
END GEWERATE:

Certain optimizations that you specify can change the contents of the subsystems that the
For Each Subsystem instantiates. In such cases, the code generator does not use for-
generate loops in the HDL code. The HDL code does not contain for-generate loops, if you
have:

* Bus or complex input signals.

* Certain optimizations enabled on the subsystem, such as resource sharing and
streaming.

* Vector inputs that get partitioned into nonscalar signals in the Verilog code. To obtain
for-generate loops in the Verilog code, partition the vector signal to scalars.

Optimize the For Each Subsystem Algorithm

To optimize the algorithm contained within the For Each Subsystem, you can enable
optimizations such as resource sharing and streaming on the DUT that contains the For
Each Subsystem. For example, by using the resource sharing optimization, you can share
multiple Subsystem instances that are created by the For Each Subsystem. This
optimization reuses the algorithm modeled by the Subsystem across multiple instances
and reduces the area usage on the target device.

Note: When you enable optimizations on the For Each Subsystem, the generated HDL
code does not contain for-generate loops.

10-37

10 Model Design for HDL Code Generation

This example shows how to use the resource sharing optimization on the For Each
Subsystem. To share resources, select the Subsystem block that contains the For Each
Subsystem and then specify the Sharing Factor. In this example, right-click the
Subsystem Foreach block and select HDL Code > HDL Block Properties. Set the
Sharing Factor to 4, because the For Each Subsystem generates four Subsystem
instances. Then, generate HDL code for the Subsystem Foreach block.

To see the effect of the resource sharing optimization, at the command-line, enter
gm_foreach subsystem examplel to open the generated model. In the generated
model, you see that the optimization shared the four subsystem instances generated by
the For Each Subsystem into one Subsystem For Each Subsystem Instancel.

D Lint16 [18] D2]

1 s Lint16 [1x2] D1
In1 B outl

» in

Senalizer_Subnetwork

D uint16 [12] 02 $— int{6 (=802 [] Int

2 : o Lint16 [1x2] D1 ufixG4_Ena0 [1x2] D1 ufixfi4_En30 (8) D2

inz outd — e In2 outt —p{in0 outd

y 1]]]
ini Outl
- In3 For Each Subsystem_instance 10_deserializer
Serializer_Subnetwork1 [1:2]
For Each Subsystem_instance1
uint6 [1x8) D2 -
D'] Lint16 [1x2] D1
In2 L D1 outl
count in1
cir_0_3 Seralizer_Subnetwork2

If you double-click the For Each Subsystem Instancel block, you see the algorithm
computed for the size 2 subarrays of inputs In1 and In3.

10-38

See Also

n uint16 [1x2] D1

In1
uint18 [1x21 DT 1 x |uint32[1x2) D1 uintaz [1x2] D1
)
[1x2]
In2 Product Delay1
wint16 [1x2] D1 = + uint32 [1x2] D1 o ufix64_En30 [1x2] D1 @
(3} 1) + [x2] [x2] o
In3 Add Gain h

To learn more about the resource sharing optimization, see Resource Sharing.

See Also
For Each Subsystem

10-39

matlab:helpview(fullfile(docroot,'/hdlcoder/ug/resource-sharing.html'))

10 Model Design for HDL Code Generation

Model and Debug Test Point Signals with HDL Coder™

This example shows how you can mark signals as test points in your Simulink™ model
and, after HDL code generation, debug the signals at the top level using the generated
model or a test bench.

Why Use Test Points?

Test points are signals that you can use to easily debug and observe the simulation results
at various points in your Simulink™ model. You can observe signals designated as test
points with a Floating Scope block in a model. In Simulink™, you can designate any signal
in a model as a test point.

After code generation, you can observe test point signals at the DUT output ports and
further debug the generated code in downstream workflows. This capability makes
debugging your design easier because the code generator can propagate test point
signals deep within the subsystem hierarchy to the DUT output ports.

Generate
synthesizable HDL
code with test

Create HDL- Designate test Enable DUT i

- esignate tes nable point ports Debug test
compatible point signals in port generation . .
- i point signals

Simulink model your model for test points

10-40

Generate |P core
with test point
ports mapped to
interfaces

Create HDL-Compatible Model

Before you designate signals as test points and generate HDL code, make sure that the
model you create is compatible for HDL code generation. See Create HDL-Compatible
Simulink Model.

For this example, open the hdlcoder simulink test points model that has been
prepared for HDL code generation. The DUT is an Enabled Subsystem that calculates two
coefficients based on inputs from a Selection Logic and a Comparator.

matlab:helpview(fullfile(docroot,'hdlcoder/gs/create-hdl-compatible-simulink-model.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/gs/create-hdl-compatible-simulink-model.html'))

Model and Debug Test Point Signals with HDL Coder™

load system('hdlcoder test points')
open_system('hdlcoder test points/DUT/Mal Counter')
set param('hdlcoder test points', 'SimulationCommand', ‘'update');

winth
Outt 4

uintl

. ufix 1
boolean

0

L P
E— z ey
Comparator Unit Delay cpt
uintl
ufix!7_Enid
(0 e
boolaan e
2
- oo fix17_En18
S OR — » z? = I acc c_imp u-...2
" c_imp
Logical acc Delay acc

Calculate Cosfficients.

= >
I

Constant O

uintE bookean
e ey

Relational 0 vt

Logical rst

Designate Signals as Test Points
To debug internal signals in this model, mark them as test points in either of these ways:

* In the Simulink Editor, to open the Signal Properties dialog box, right-click the signal,
and select Properties. Then, select Test Point.

* At the command line, get the handle to the output port of a block, and then set the
port parameter TestPoint to 'on'.

For example, enter these commands to designate the output signal from the Logical acc
block that performs the OR operation as a test point.

10-41

10 Model Design for HDL Code Generation

portHandles = get param('hdlcoder test points/DUT/Mal Counter/Logical acc', 'portHandle
outportHandle = portHandles.Qutport;
set param(outportHandle, 'TestPoint', 'on');

If a block has more than one output port, specify the outport handle that you want to
designate as testpoint. For example, to designate the second output of a Demux block as a
test point, enter this command:

set param(outportHandle(2), 'TestPoint','on');

Simulink™ displays an indicator on each signal for which you enable the Test point
setting. If you navigate the model, you see three additional test points. These test points
are inside the Selection Logic subsystem, the Comparator Subsystem, and the Calculate
Coefficients Subsystem blocks.

To learn more, see Test points.

Enable DUT Output Port Generation for Test Points

Before you generate HDL code, to debug signals that are designated as test points,
enable HDL DUT port generation for the signals. When you generate code for the model,
HDL Coder™ propagates these signals to the DUT as an additional output port.

To enable DUT output port generation for the hdlcoder simulink test points
model:

* In the Configuration Parameters dialog box, on the HDL Code Generation > Global
Settings > Ports tab, select Enable HDL DUT port generation for test points.

* At the command line, use the EnableTestpoints property.

hdlset param('hdlcoder test points', 'EnableTestpoints','on'")
To learn more about this parameter, see Enable HDL DUT Port Generation for Test Points.

After you enable DUT port generation, you can run either of these workflows:
* Generate HDL code. To deploy the code onto a target FPGA, use the Generic ASIC/
FPGA workflow in the HDL Workflow Advisor.

* Map test point ports to target platform interfaces, and generate an HDL IP core by
using the IP Core Generationor Simulink Real-Time FPGA I/0 workflows
that use Xilinx Vivado or Altera Quartus II as the synthesis tools.

10-42

matlab:helpview(fullfile(docroot,'simulink/ug/working-with-test-points.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/ug/enable-hdl-dut-port-generation-for-test-points.html'))

Model and Debug Test Point Signals with HDL Coder™

HDL Code Generation and FPGA Targeting

If you want to see the mapping between test point ports in the HDL code and the test
point signals in your model, enable generation of the code generation report. The report
displays the test point ports with links to the corresponding test point signals in your
Simulink™ model.

For example, to enable report generation for the hdlcoder simulink test points
model:

* In the Configuration Parameters dialog box, on the HDL Code Generation pane,
select Generate resource utilization report.
* To specify this setting at the command line, use the ResourceReport property.

hdlset param('hdlcoder test points', 'ResourceReport',‘on')
To learn more about report generation, see Create and Use Code Generation Reports.
To generate HDL code:

* Right-click the DUT Subsystem and select HDL Code > Generate HDL for
Subsystem.

* At the command line, run makehdl on the DUT Subsystem.

To deploy the code onto a target platform, use the Generic ASIC/FPGA workflow. In the
HDL Workflow Advisor, on the Set Target Device and Synthesis Tool task, for Target
workflow, select Generic ASIC/FPGA, specify the Synthesis tool, and then run the
workflow.

When generating code, HDL Coder™ opens the Code Generation report. The Code
Interface Report section contains links to the test point ports in the Qutput Ports
section.

10-43

matlab:helpview(fullfile(docroot,'hdlcoder/ug/creating-and-using-code-generation-reports.html'))

10 Model Design for HDL Code Generation

Output ports

Port Name Datatype Bits
ce_out boolean 1
c_im ufix17_Enl6 17
c_imp ufix17_Enlé 17
cot_s uint8 8
tp Sum C outl ufix17_Enl6 17
tp_Relational_outl boolean 1
tp_Sum_outl uint8 8
Ip_logicol acc outd boolean 1
tp_Relational 0 outl boolean 1

When you click the links in the test point ports, the code generator highlights the
corresponding signals that you designated as test points in your Simulink™ model.

Therefore, you can use the report to trace back from the test point port in the generated

code to the test point signals in your Simulink™ model.

To see the test point ports in the generated HDL code, open the DUT . v file.

cutput [16:0] c_imp; £/f afixlT Enlé

output [7:0] cpt_=; /S uintg

cutput [16:0] tp Sum C outl; ;¢ ufixlT E

output tp Relational outl; ;S Testpoint port
cutput [7:0] tp Sum outl: S/ uintg Testpoint port
output tp Logical acc outl:; /S Testpolnt port
cutput tp Relational 0 outl; /¢ Testpoint port

You can see the test point ports at the top level module declaration. These ports have the

_Enle Testpolnt port

prefix tp_and a comment to indicate that they correspond to test point ports. If you
specify VHDL as the target language, you can see the test point ports in the entity

declaration.

10-44

Model and Debug Test Point Signals with HDL Coder™

IP Core Generation and SoC Targeting

To generate an HDL IP core, open the HDL Workflow Advisor. In the Advisor:

1

On the Set Target Device and Synthesis Tool task, for Target workflow, select IP
Core Generation, and specify a Target platform that uses Xilinx Vivado or
Altera Quartus II asthe Synthesis tool. If you use the Simulink Real-Time
FPGA I/0 workflow, specify a Target platform that uses Xilinx Vivado as the
Synthesis tool

On the Set Target Reference Design task, you can specify the HDL Coder™ default
reference designs, or a custom reference design that you want to integrate the HDL
IP core into. If you do not specify unique names for test point signals, running this
task can fail. To fix this error, in the Result subpane, select the link to generate
unique names for test point signals. To verify that the task passes, rerun the task.

On the Set Target Interface task, you see the test point ports in the Target
platform interface table. You can map the ports to AXI4, AXI4-Lite, or External Port
interfaces. After you run this task, the code generator stores this testpoint interface
mapping information on the DUT. To see this information, in the HDL Block
Properties for the DUT Subsystem, on the Target Specification tab, look for the
TestPointMapping block property. You can reload this information for the DUT
across subsequent runs of the workflow.

On the the Generate RTL Code and IP Core task, right-click and select Run to
Selected Task to generate the IP core. The code generator opens an IP Core
Generation report that displays the mapping of test point ports to interfaces.

10-45

10 Model Design for HDL Code Generation

Target platform interface table:

Port Name Port Tvpe Data Type Target Platform Interfaces Bit Range / Address / FPGA Pin
cpt_e Inport ufixl AXT4-Lite x"100"
pv_e Inport boolean AXT4-Late x"104"
mvi Inport boolean AXT4-Late x"'108"
sync_e Inport uint8 AXT4-Late x"110"
sat Inport uint8 DIP Switches [0:7] [0:7]
Enable In Inport boolean AXT4-Lite x"11c”
c_im Outport ufixl7_Enlé External Port

c_imy Outport ufixl7 Enl6é External Port

cpt_s Outport uint8 AXT4-Lite x"'1oc”
TestPoint_ 3 Test point boolean AXT4-Late x"114"
TestPomt Test pomnt ufixl7 Enlé External Port

TestPoint 1 Test point boolean AXT4-Late x"118"
TestPomt 2 Test pomnt uwint8 LEDs General Purpose [0:7] [0:7]

When you click the links in the test point ports, the code generator highlights the
corresponding signals that you designated as test points in your Simulink™ model.

If you open the generated HDL source file, you see the test point signals connected to the

IP core wrapper.

MaJCounte_ip axi_lite u MaJCounte_ip axi_ lite inst (...

.read TestPoint 3 (tp TestPoint 3 sig),
.read TestPoint 1 (tp TestPoint 1 sig),

MaJCounte ip dut u MaJCounte ip dut inst (...

10-46

.tp_TestPoint (tp_TestPoint_sig),

.tp TestPoint 1 (tp TestPoint 1 sig),
.tp TestPoint Z(tp TestPoint Z_=sig),
.tp_TestPoint_3 (tp_TestPolint_3_sig)

ff ufixl
;S ufixl

Model and Debug Test Point Signals with HDL Coder™

Run the workflow to generate the Software Interface model and integrate the IP core into
the target reference design that you specified in the Set Target Reference Design task.

To learn more about the IP Core Generation workflow, see Custom IP Core
Generation and Custom IP Core Report.

Debug Test Point Signals

After you generate HDL code or generate an IP core, you can debug the test point signals.

If you generated HDL code for your model or ran the Generic ASIC/FPGA workflow, to
debug the test point signals, generate a HDL test bench, or use the generated model. To
open the generated model, at the command line, enter gm_hdlcoder_ test points.

uint16 kG
@—Iv convert
data_g
Con vert dala_a H
. ufin] T wuefin 1 c i
— Concat » convert »cpt e]
boolean L ufix
Conwvert pv
Comverl pv_a
«_imy
baalea e
(2 F : o (O]
boolean
pv_e
cpt_s
boolean boolean boolean
{ : ——» boolean et
5_mvi
Coanwvart 5_mvt tp_Sum_C_outd
uints uints
@—b convert o B
" uintg
sync_ir Converl sat1 tp Relational_outl
uintd Linté
(Ca }——» convert e st
aal uintE tp_Sum_outl
- Convert sat
boolean boolean boolean
@—h boolean g Enable_Intp_Logical_acc_outd
Coantrol_In

Canwvarl_coniral

ufil?_Eni6 h@
pald
ufil?_En16 __@
pa
wEnis uintg
o 22 P
cpl_s
Dalay cpd
@ ufix17_Enig
| g [
'? boolean
—l—._
P uinia —
-
L3
’? :.:J::Ieafu

10-47

matlab:helpview(fullfile(docroot,'hdlcoder/ug/custom-ip-core-generation.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/ug/custom-ip-core-generation.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/ug/custom-ip-core-report.html'))

10 Model Design for HDL Code Generation

In the generated model, you see the test points at the DUT output ports connected to a
Scope block that is commented out. To observe the simulation results for these signals,
uncomment the Scope block, and then run the simulation. If you navigate the generated
model, you can see that the code generator creates an output port at the point where you
designated the signal as a test point. HDL Coder™ then propagates these ports to the
DUT as additional output ports.

If you run the IP Core Generation workflow to the Generate Software Interface
Model task, the code generator opens the Software Interface model.

ufix17_Eni16
c_im
ufix17_Eni16
2)
) c_imp
> 3)
cpt_s

To observe the data on test point signals from the ARM processor, uncomment the Scope
block, and then run the Software Interface model.

Considerations

» Test point ports are considered similar to other output ports in the code generation
process. Test point port generation works with all optimizations such as resource
sharing, streaming, and distributed pipelining. To learn about various optimizations,
see Speed and Area Optimizations.

* Ifyou generate a validation model, you see that the code generator does not compare
the test point signals with the test point ports at the output. You can still observe the
test point signals by uncommenting the Scope block and by running the simulation. To
learn more about generated model and validation model, see Generated Model and
Validation Model.

10-48

matlab:helpview(fullfile(docroot,'hdlcoder/speed-and-area-optimization.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/ug/generated-model-and-validation-model.html'))
matlab:helpview(fullfile(docroot,'hdlcoder/ug/generated-model-and-validation-model.html'))

See Also

If you generate a cosimulation model, you see the test point ports connected to a
Terminator block. To observe the test points, remove the Terminator blocks, and
connect the output ports to a Scope block, and then run cosimulation. You can also
observe the waveforms in the HDL simulator that you run cosimulation with. To learn
more about cosimulation, see Generate a Cosimulation Model.

If you open the generated model, you see the Scope block commented out for
performance considerations.

You cannot specify the port ordering for the DUT test point ports. HDL Coder™
determines the port ordering when you generate code.

Target workflow must be Generic ASIC/FPGA, IP Core Generation, or
Simulink Real-Time FPGA I/O.

If you use IP Core Generationor Simulink Real-Time FPGA I/0 workflows,
the Synthesis tool must be Xilinx Vivado or Altera Quartus II.Xilinx ISE
is not supported.

If you use IP Core Generation or Simulink Real-Time FPGA I/0 workflows,
you can map the test point ports to AXI4, AXI4-Lite, or External Port interfaces. You
cannot map the ports to AXI4-Stream or AXI4-Stream Video interfaces.

See Also

More About

“Test Points” (Simulink)
“Enable HDL DUT port generation for test points” on page 16-51
“Generated Model and Validation Model” on page 23-2

10-49

matlab:helpview(fullfile(docroot,'hdlcoder/ug/generating-a-simulink-model-for-cosimulation-with-an-hdl-simulator.html'))

10 Model Design for HDL Code Generation

Allocate Sufficient Delays for Floating-Point Operations

Ij data

In this section...

“Problem” on page 10-50
“Cause” on page 10-50
“Solution” on page 10-51

Problem

Sometimes, when generating code from your floating-point algorithm in Simulink, HDL
Coder generates an error that it is unable to allocate sufficient number of delays.
Cause

This error message generally occurs when you have Simulink™ blocks performing
floating-point operations inside a feedback loop. These blocks have a latency. HDL
Coder™ is unable to allocate delays to compensate for the latency, because the code
generator needs to add delays and balance them to maintain numerical accuracy.

If you open this example, you see a Simulink™ model that uses single data types.

il

it

il
adsatad

10-50

p|data g | = out S
1;-: = sumHDL_el —
-
o == p|valid L validOut |
i Rl e v validOut_s! =
—— [Dookan —]

rst mumel_sl

CumSum_sl

To generate HDL code for the CumSum_S1 Subsystem, right-click the subsystem and
select HDL Code > Generate HDL for Subsystem. During code generation, HDL
Coder™ generates an error:

Unable to allocate delays to compensate for the 11 delays introduced by Add in
native floating-point mode. Consider either increasing the oversampling factor,

Allocate Sufficient Delays for Floating-Point Operations

setting the 'Latency Strategy' to 'Zero', or adding the necessary output
pipelines via HDL block properties for other blocks in the model to accommodate
for the latency introduced by this block.

By using the path to the block mentioned in the error message, navigate to the Add block
in the model. This block is inside a feedback loop.

OwversamplingFactor=12 Synchronous
State Control Enable
.—l—>-1 + 1
data -+ accum " Z N _| -

reset

v
i

e -
Fj—|

The Add block has a latency of 11. When generating code, HDL Coder™ cannot allocate
11 delays for the block, because it cannot add matching delays to other paths.

This model serves as an example to illustrate the various strategies to solve this problem.

Solution
Strategy 1: Global Oversampling
This modeling paradigm uses the clock-rate pipelining optimization to oversample your

design to a clock-rate much faster than the DUT sample rate. To enable this optimization,
specify a global oversampling factor for your Simulink model. The floating-point delays

10-51

10 Model Design for HDL Code Generation

then operate at the faster clock-rate and can be allocated successfully. For more
information, see “Clock-Rate Pipelining” on page 24-58.

1 Specify an oversampling factor that is equal to or greater than the latency of the
floating-point operators that are unable to allocate delays. For the RunningSum
model, specify an oversampling factor at least equal to 12. To learn about the latency
values of the floating-point operators, see “Simulink Blocks Supported with Native
Floating-Point” on page 10-106.

To specify the oversampling factor, in the Configuration Parameters dialog box, on
the HDL Code Generation > Global Settings tab, set Oversampling factor to 12.

2 Enable hierarchy flattening on the DUT and make sure that subsystems inside the
DUT inherit this setting. For the RunningSum model, right-click the CumSum_s1
subsystem and select HDL Code > HDL Block Properties, and then set
FlattenHierarchy to on.

Strategy 2: Local Oversampling

To model your design at the data rate and selectively increase the sample rate of blocks
for which HDL Coder™ is unable to allocate delays, use local oversampling. These blocks
then operate at the faster clock rate and can accommodate the required number of
delays.

If you open the RunningSum_0Smanual model and navigate to the Add block, it shows
how you can increase the sample rate of the Add block and allocate delays.

10-52

Allocate Sufficient Delays for Floating-Point Operations

sum

1

use of repeat and zoh blocks to deal with floating-peint latency in
feedback loop instead of oversampling the whole design

* The blocks that are within the boundary of the Repeat and Zero Order Hold blocks
operate at the clock rate that is 12 times faster than the sample rate of the model.

* The subsystem has a Delay block of length 12 at the output of the Add block. When
generating code, the Add block absorbs this Delay block, which compensates for the
latency of the operator. To balance delays, the subsystem contains Delay blocks of
length 12 in other paths.

You can now generate HDL code for the CumSum_s1 subsystem. To generate HDL code
for the CumSum_S1 Subsystem, right-click the subsystem and select HDL Code >
Generate HDL for Subsystem.

Strategy 3: Delay Blocks

Use this modeling paradigm to model your entire design at the Simulink data rate. For
blocks that are unable to accommodate the required number of delays, add a Delay block
with a sufficient Delay length at the output of the blocks. Specify a Delay length that is
equal to the latency of the floating-point operator. Make sure that you add matching
delays in other paths.

For the RunningSum model, you can add a Delay block of length 12 at the output of the

Add block. When generating code, the Add block absorbs this delay, because the block
has a latency of 12.

10-53

10 Model Design for HDL Code Generation

single
+ =single | =single
0 0 1

For more information, see “Latency Considerations with Native Floating Point” on page
10-85.

Strategy 4: Use Custom Latency

You can use the Latency Strategy for various blocks to specify a custom latency value
and absorb the additional delays. Using this strategy can optimize your design for trade-
offs between:

* Clock frequency and power consumption.
* Oversmapling factor and sampling frequency.

To learn more about the trade-offs and blocks for which you can specify a custom latency,
see LatencyStrategy.

Note: When you use the custom latency strategy, make sure that the Subsystem
that contains the block for which native floating-point is unable to allocate delays
is not a conditional subsystem. That is, the Subsystem must not contain trigger,
reset, or enable ports.

To see how using a custom latency can resolve the delay allocation issue, open the model
RunningSum_Custom.slx.

OwversamplingFactor=12

¥
N

single

data P+ SCCUm " —- -‘-‘@
B
| F
r" _
single I-"'_|
DDIe3an J
L2} =

10-54

matlab:helpview(fullfile(docroot,'hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_a99b0822-f2a6-4f5b-aca9-7f7251a67c7c'))

See Also

The model is similar to the original RunningSum model but does not have the Enable
block. Using the Enable block can prevent the custom latency strategy from absorbing
delays. Specify a custom latency of one for the Add block. The Add block can then absorb
the Unit Delay adjacent to the Add block.

You can now generate HDL code for the CumSum sl subsystem.
Strategy 5: Zero Latency

You can use the zero latency strategy setting for blocks in your design for which native
floating point is unable to allocate delays. By default, blocks in your design inherit the
native floating-point settings that you specify in the Configuration Parameters dialog box.
To specify a custom latency strategy setting for a block:

1 Right-click the block, and select HDL Code > HDL Block Properties.
2 Inthe HDL Block Properties dialog box, switch to the Native Floating Point tab.
Then, set LatencyStrategy to Zero.

For the RunningSum example, set the LatencyStrategy of the Add block to Zero. To
choose the native floating point library and specify zero latency strategy, at the command
line, enter:

fc = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
hdlset param('RunningSum/CumSum_sl/Subsystem/Add', 'LatencyStrategy', 'Zero');

Note To obtain good performance on the target FPGA device, it is not recommended to
set Latency Strategy to Zero from the Configuration Parameters dialog box.

See Also

FPToleranceStrategy | FPToleranceValue |
hdlcoder.createFloatingPointTargetConfig

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

10-55

10 Model Design for HDL Code Generation

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-
94

10-56

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

Optimize Generated HDL Code for Multirate Designs
with Large Rate Differentials

In this section...

“Issue” on page 10-57
“Description” on page 10-57

“Recommendations” on page 10-60

Issue

When generating HDL code from your multirate algorithm in Simulink, HDL Coder might
generate a large number of pipeline registers that can prevent the HDL design from
fitting into an FPGA. This issue occurs due to modeling patterns that might result in large
rate differentials. You can address this issue by using modeling techniques to manage
sample time ratios.

Description

This issue occurs when your Simulink™ model has a significantly large difference in
sample rates or uses certain block implementations or optimizations that result in
different clock-rate paths, such as:

* Multicycle block implementations

* Input and output pipelining

+ Distributed pipelining

* Floating-point library mapping

* Native floating-point HDL code generation

» Fixed-point math functions such as reciprocal, sqrt, or divide

* Resource sharing

* Streaming

The additional pipelines result in a latency overhead that requires the insertion of
matching delays across multiple signal paths operating at different rates. If the ratio of

the fastest to the slowest clock rate is quite large, the code generator can potentially
introduce a large number of registers in the resulting HDL code. The large number of

10-57

10 Model Design for HDL Code Generation

pipeline registers can increase the size of the generated HDL files, and can prevent the
design from fitting into an FPGA.

To see an example of how this issue occurs, open this Simulink™ model.

open_system('hdlcoder multirate high differential')

outt N I
Display

singlel1) | In1
Display1

hdlcoder_multirate_high_differential

When you compile the model and double-click the
hdlcoder multirate high differential Subsystem, you can see that the model
has a floating-point Gain block, a multicycle operator, in the fast clock-rate region.

10-58

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

single

single D1 single D1 single D
CO— 2 2 ()

single(pi)

Sample Time Legend 4

hdlceder_multirate_high_differential
Sample Times for 'hdlcoder_multirate_high_differential’

single(1) —— p{ 2)

Color Annotation Description Value

[| D1 Discrete 1 10.0000e-006 (period)

[| D2 Discrete 2 1 {period)
H Hybrid N/ A

|:| Show discrete value as 1/Period. Print

Help

Generate HDL code for the hdlcoder multirate high differential Subsystem
and check the output log.

Generating HDL for 'hdlcoder multirate high differential/hdlcoder multirate_high differential’.

#3# Using the config set for model hdlcoder multirace_high differential for HDL code generation parameters.
Starting HDL check.

Tne code generation and optimization options you have chosen have introduced additional pipeline delays.

The delay balancing feature has automatically inserted matching delays for compensation.

#4# The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.
Output port 0: 100000 cycles.

Output port 1: 1 eycles.

Begin VHDL Code Generation for 'hdlcoder multirate high differential.

Working on hdlcoder_multirate_high differential/hdlcoder_multirate_high differential/nfp_mul_comp as hdlsrc\hdlcoder multirate high_differential\nfp mul_comp.vhd.
Working on hdlcoder multirate_high_differential te as hdlsrc\hdlcoder multirate high differential\hdlcoder multirate high differential tc.vhd.

Working on hdlcoder multirate high differential/hdlcoder multirate high differential as hdlsrc\hdicoder multirate high differential\hdlcoder multirate high differential.whd.
Generating package file hdlsrc\hdlcoder multirate high differential\hdlcoder multirate high differentisl pkg.vhd.
Creating HDL Code Generation Check Report hdlcoder multizate high differential report.html

HDL check for 'hdlcoder multirate high differential' complete with 0 errors, 0 warnings, and 0 messages.
HDL code generation complete.

Open the generated model. At the command line, enter

gm_hdlcoder multirate high differential. When you compile the model and
double-click the hdlcoder multirate high differential Subsystem, the model
looks as displayed by the sample time legend.

10-59

10 Model Design for HDL Code Generation

Sample Time Legend *
+rate_high_differential gm_hdicoder_multirate_high_differential |4
Sample Times for 'gm_hdlcoder_multirate_high_differential’
N gle D2 1 single D2 —_—
§ - - >
Color Annotation Description Value - q '\;)
[| D1 Discrete 1 10.0000e-006 (period) delayMatch
[] D2 Discrete 2 1 (period)
H Hybrid NjA
D Show discrete value as 1/Period. Print
Hel »NEP | single D1 single D1
E | mul > z9 - »(1)
si sinale D1 Gain delayMatch
@olhgb D1 > Z'Z single P)

The large output latency on the fast clock rate region of the design is introduced by the
code generator to balance delays across multiple output paths of the system. This large
latency increases the size of the generated HDL files and reduces the efficiency of the
generated code.

Recommendations
Recommendation 1: Use a Single-Rate Model

Most applications that you target the HDL code for might not require such a large rate
differential. In that case, it is recommended that you use a single-rate model. In this
example, you can change the sample rate of the Constant block inside the

hdlcoder multirate high differential Subsystem to be the same as that of the
base model.

Open this model that has the sample time of the Constant block changed to 10E-06,
which is the same sample time as the base sample time of the model.

open_system('hdlcoder singlerate')

10-60

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

Y

In1

singla(1)

Constant

Outs N
Displayd
outz ol 1
Displays

hdlcoder_singlerata

When you compile the model and double-click the hdlcoder singlerate Subsystem,
you see that the signal paths in the model operate at the same sample time of 10E-06.

single D1 single D
z2 | single(pi)
Sample Time Legend >
hdlcoder_singlerate single(1)
Sample Times for "hdlcoder_singlerate’
Color Annotation Description Value
[] FiM Fixed in Minor Step [0,1]
[| D1 Discrete 1 10.0000e-006 (period)
|:| Show discrete value as 1/Period. Print
Help

single D1 n

single D1

Generate HDL code for the hdlcoder singlerate Subsystem and check the output log.

10-61

10 Model Design for HDL Code Generation

#7%# Generating HDL for 'hdlcoder singlerate/hdlecoder singlerate’.

#¥# Using the config set for model hdlcoder singlerate for HDL code generation parameters.

##+ Starting HDL check.

§## The code generation and cptimization opticonsg vou have chozen have introduced additional pipeline delays.

#42 The delay balancing feature has sutomatically inserted matching delays for compensatian.

#%%# The DUT requires an initial pipeline sectup latency. Each output port experiences these additional delays.
$$2 Qutput port 0: 6 cycles.

w¥## Output port 1: & cycleas.

#%## Begin VHDL Code Gensration for 'hdlcoder _singlerate’.

#%#% Working on hdlcoder singlerate/hdlcoder_singlerate/nfp mul_ comp as hdlsrchhdlccder singlerate’\nfp mul comp.vhd.
Working on hdlecoder singlerate/hdlcoder singlerate as hdlsrclhdlcoder singleracel\hdleoder singlerace.vhd.

4#4¢ Generating package file hdlsrch\hdlcoder singlerate‘\hdlcoder singlerate pkg.vhd.

Creating HDL Code Generation Check Report hdlcoder singlerate report.html

#%¢ HDL check for "hdleoder singleratse” complete with 0 errors, 0 warnings, and 0 messages.
#%¥# HDL code generation complete.

You see that the output latency has decreased significantly. Now open the generated
model. At the MATLAB™ command line, enter gm_hdlcoder singlerate. When you
compile the model and double-click the hdlcoder singlerate Subsystem, the model
looks as displayed by the sample time legend.

Sample Time Legend g

gm_hdicoder_singlerate

single D1
Sample Times for 'gm_hdlcoder_singlerate” -C-

Color Annotation Description Value

[| D1 Discrete 1 10.0000e-D06 (period)
|:| Show discrete value as 1/Period. Print single D1
-
Help Gain_const ——» NFP

single D1
plmul | ———>(1)

Gain

single D single D1
GO 22 f2

10-62

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

The generated HDL code is now optimal and uses few registers. Therefore, you can
deploy the design to target FPGA platforms.

Recommendation 2: Reduce the Rate Differential

If you want to use a multirate model, it is recommended that you reduce the rate
differential. Rate differential corresponds to the ratio of the fastest to the slowest clock
rate in your design. If your target application requires two signal paths such that one
signal path runs in time units of nanoseconds (ns) and the other signal path runs in time
units of microseconds (us), you can choose to retain the multirate paths in your model. Be
aware that delay balancing can introduce a significantly large number of registers to
balance the signal paths.

In this example, you can change the sample rate of the Constant block inside the
hdlcoder multirate high differential Subsystem to reduce the rate differential.

Open this model that has the sample time of the Constant block changed to 0.01.

open_system ('hdlcoder multirate medium differential')

Outs o1
Display2

single(1) | In1
Displayld

hdlcodar_multirate_medium_differential

When you compile the model and double-click the
hdlcoder multirate medium differential Subsystem, you see that the rate
differential between the two signal paths is equal to 1000.

10-63

10 Model Design for HDL Code Generation

D1 D1 D1 D1

Sample Tirme Legend e

hdicoder_multirate_medium_differential single(1) » 2)
Sample Times for "hdlcoder_multirate_medium_differential’

Color Annotation Description Value

[] FiM Fixed in Minor Step [0,1]

[D1 Discrete 1 10.0000e-006 (period)

[D2 Discrete 2 0.01 (period)
H Hybrid N/A

|:| Show discrete value as 1/Period. Print

Help

Generate HDL code for the hdlcoder multirate medium differential Subsystem
and check the output log.

Generating HDL for 'hdlcoder_multirate medium differential/hdlcoder_multirate_medium differenciel’.

Using the config set for model hdlooder multirate medium differential for HDL code generation parameters.
Starting HDL check.

##¢ The code generation and optimization options you have chosen have introduced additiomal pipeline delays.
The delay balancing feature has automatically inzerced matching delays for compensation.

##4 The DUT requires an initiel pipeline setup latency. Each output port experiences these additionel delavs.
%% Oucput pert 0: 1000 cyoles.

Ef& Qutput port 1: 1 cvcles.

#%# Begin VHDL Code Generation for 'hdlcoder mulsirate_medium differensiall.

##f Working on nalcoder multiraTe medium differencial/ndlcoder mulTirate medium differsntial/nIp_mul_comp as pdlsrc\ndlcoder multirate medium different

1\nfp mul _comp.vhd.

Working on hdlcoder multirate medium differential_tc as hdlsrc\hdlcoder multirate medium differential\hdlcoder multirate medium differential tc

Working on hdlcoder multirate medium differential/hdlcoder multirate medium differential as hdlsrc\bdlcoder multirace medium differentialihdleoder multirate medium differential.vhd.
##4 Generating packege file hdlsrc\hdlcoder multirate medium differentisl\hdlcoder multirete medium differential pkg.vhd.

Creating HDL Code Generation Cheek Report hdlcoder multirace medium differential repors.html

ADL check for 'nAlcoder_multirate medium differentisl' complete With O errors, 0 warnings, and 0 messages.

HDL code generation complece.

Open the generated model. At the MATLAB™ command line, enter

gm _hdlcoder multirate medium differential. When you compile the generated
model and double-click the hdlcoder multirate medium differential Subsystem,
the model is as displayed by the sample time legend.

10-64

Optimize Generated HDL Code for Multirate Designs with Large Rate Differentials

nedium_differential gm_hdicoder_multirate_medium_differential |4

Sample Times for 'gm_hdlcoder_multirate_medium_differential”

Color Annotation Description Value c. e T > ’f‘:’]

|] D1 Discrete 1 10.0000e-006 (period) —)

[D2 Discrete 2 0.01 (period) delayMatck

H Hybrid M/A
[] show discrete value as 1/Period. Print C. single D1
Gain_const - o1
> single single
Help 5 E————» (1)
" 1 . Gain delayMatch
single D o |single p1 Y
(1)y — p 72

The model has a large number of registers, approximately 1000, in the fast clock rate
path. The additional cost of registers is expected when you have a control logic that runs
at a sample rate that is 1000 times faster than the sample rate of the system. When you
deploy the generated code to a target platform, be aware of the constraints in hardware
resources on the target platform. This recommendation offers a trade-off between
generating optimal HDL code and targeting practical FPGA applications that might
require an extremely large rate differential.

Recommendation 3: Map Pipeline Delays to RAM

To optimize the number of registers that your design uses on the target FPGA device, you
can use the Map Pipeline Delays to RAM setting. This setting is a trade-off of the
pipeline registers that are inserted in the HDL code with RAM resources to save area
footprint on the target FPGA device. You can enable this setting in the HDL Code
Generation > Optimizations > General tab of the Configuration Parameters dialog box.

You can also specify this setting at the command line by using the
MapPipelineDelaysToRAM property with hdlset param or makehdl. You can view the
property value by using hdlget param. Use either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('hdlcoder multirate high differential/hdlcoder multirate high differential', ...
'MapPipelineDelaysToRAM', 'on')

10-65

10 Model Design for HDL Code Generation

* When you use hdlset param, you can set the parameter on the model, and then
generate HDL code by using makehd1.

hdlset param('hdlcoder multirate high differential', ...
'MapPipelineDelaysToRAM', 'on')
makehdl('hdlcoder multirate high differential/hdlcoder multirate high differential')

Use this setting in combination with the previous recommendations to further improve
the efficiency of the generated HDL code and for deploying the code to the target
platform.

See Also
hdlcoder.createFloatingPointTargetConfig

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-
94

10-66

Getting Started with HDL Coder Native Floating-Point Support

Getting Started with HDL Coder Native Floating-Point
Support

In this section...

“Numeric Considerations and IEEE-754 Standard Compliance” on page 10-67
“Data Type Considerations” on page 10-68

Native floating-point support in HDL Coder enables you to generate code from your
floating-point design. If your design has complex math and trigonometric operations or
has data with a large dynamic range, use native floating-point.

In your Simulink model:
* You can have single-precision and double-precision floating-point data types and

operations.

* You can have a combination of integer, fixed-point, and floating-point operations. By
using Data Type Conversion blocks, you can perform conversions between single-
precision and fixed-point data types.

The generated code:

* Complies with the IEEE-754 standard of floating-point arithmetic.

+ Is target-independent. You can deploy the code on any generic FPGA or an ASIC.

* Does not require floating-point processing units or hard floating-point DSP blocks on
the target ASIC or FPGA.

HDL Coder supports:

* Math and trigonometric functions

* Large subset of Simulink blocks

* Denormal numbers

* Customizing the latency of the floating-point operator

Numeric Considerations and IEEE-754 Standard Compliance

HDL Coder generates code in compliance with the IEEE 754-2008 standard of floating-
point arithmetic.

10-67

10 Model Design for HDL Code Generation

31

In the IEEE 754-2008 standard, the single-precision floating-point number is 32-bits. The
32-bit number encodes a 1-bit sign, an 8-bit exponent, and a 23-bit mantissa.

30 23 22 0

Exponent Mantissa

10-68

8 23

This graph is the normalized representation for floating-point numbers. You can compute
the actual value of a normal number as:

. 23 .
value = (1)°8" *(1+ X byg_;27)* 9(e-127)
i=1

The exponent field represents the exponent plus a bias of 127. The size of the mantissa is
24 bits. The leading bit is a 1, so the representation encodes the lower 23 bits.

To generate code that complies with the IEEE-754 standard, HDL Coder supports:

* Round to nearest rounding mode

* Denormal numbers

* Exceptions such as NaN (Not a Number), Inf, and Zero

* Customization of ULP (Units in the Last Place) and relative accuracy

For more information, see “Numeric Considerations with Native Floating-Point” on page
10-71.

Data Type Considerations

With native floating-point support, HDL Coder supports code generation from Simulink
models that contain floating-point signals and fixed-point signals. You might want to
model your design with floating-point types to:

* Implement algorithms that have a large or unknown dynamic range that can fall
outside the range of representable fixed-point types.

* Implement complex math and trigonometric operations that are difficult to design in
fixed point.

See Also

* Obtain a higher precision and better accuracy.

Floating-point designs can potentially occupy more area on the target hardware. In your
Simulink model, it is recommended to use floating-point data types in the algorithm data
path and fixed-point data types in the algorithm control logic. This figure shows a section
of a Simulink model that uses Single and fixed-point types. By using Data Type
Conversion blocks, you can perform conversions between the single and fixed-point types.

#|_Command single sfix16_En11
D_Voltage | - Convert
dyoltage
Data_Type3
gl sfix32_En27 single ~ e
DF——M single —mD_Current
i~ dCurrent
P Data_Typel
> Sin single sfix16_En11
sfix32_En27 single Q_Voltage | Convert
QF—M single —® Q_Current g\oltage
| Cos qCurrent Data_Typed
Data_Type2
Park_Transform DQ_Current_Control
See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

10-69

10 Model Design for HDL Code Generation

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-
94

. “Simulink Blocks Supported with Native Floating-Point” on page 10-106

10-70

Numeric Considerations with Native Floating-Point

Numeric Considerations with Native Floating-Point

In this section...

“Round to Nearest Rounding Mode” on page 10-71
“Denormal Numbers” on page 10-72

“Exception Handling” on page 10-72

“Relative Accuracy and ULP Considerations” on page 10-73
“ULP of Native Floating-Point Operators” on page 10-75
“Considerations” on page 10-76

Native floating-point technology can generate HDL code from your floating-point design.
Floating-point designs have better precision, higher dynamic range, and a shorter
development cycle than fixed-point designs. If your design has complex math and
trigonometric operations, use native floating-point technology.

HDL Coder generates code that complies with the IEEE-754 standard of floating-point
arithmetic. HDL Coder native floating-point supports:

* Round to nearest rounding mode

* Denormal numbers

* Exceptions such as NaN (Not a Number), Inf, and Zero

* Customization of ULP (Units in the Last Place) and relative accuracy

Round to Nearest Rounding Mode

HDL Coder native floating-point uses the round to nearest even rounding mode. This
mode resolves all ties by rounding to the nearest even digit.

This rounding method requires at least three trailing bits after the 23 bits of the mantissa.
The MSB is called Guard bit, the middle bit is called the Round bit, and the LSB is called
the Sticky bit. The table shows the rounding action that HDL Coder performs based on
different values of the three trailing bits. x denotes a don’t care value and can take either

alOoral.
Rounding bits Rounding Action
Oxx No action performed.

10-71

10 Model Design for HDL Code Generation

10-72

Rounding bits Rounding Action

100 A tie. If the mantissa bit that precedes the Guard bit is a
1, round up, otherwise no action is performed.

101 Round up.

11x Round up.

Denormal Numbers

Denormal numbers are numbers that have an exponent field equal to zero and a nonzero
mantissa field. The leading bit of the mantissa is zero.

~ S [\ 5 0-126
value = (-1)*8" # (0 + X byg_;27") *27
i=1

Denormal numbers have magnitudes less than the smallest floating-point number that can
be represented without leading zeros in the mantissa. The presence of denormal numbers
indicates loss of significant digits that can accumulate over subsequent operations and
eventually result in unexpected values.

The logic to handle denormal numbers involves counting the number of leading zeros and
performing a left shift operation to obtain the normalized representation. Addition of this
logic increases the area footprint on the target device and can affect the timing of your
design.

When using native floating-point support, you can specify whether you want HDL Coder
to handle denormal numbers in your design. By default, the code generator does not
check for denormal numbers, which saves area on the target platform.

Exception Handling

If you perform operations such as division by zero or compute the logarithm of a negative
number, HDL Coder detects and reports exceptions. The table summarizes the mapping
from the encoding of a floating-point number to the value of the number for various kinds
of exceptions. x denotes a don’t care value and can take eithera 0 or a 1.

Numeric Considerations with Native Floating-Point

Sign |Exponent Significand |Value Description
X 0xFF 0x00000000 value = (—1)S oo Infinity
X OxFF A nonzero value = NaN Not a Number
value
X 0x00 0x00000000 |value =0 Zero
X 0x00 A nonzero) 23 |Denormal
value value = (1) #(0+ X byg ,27') 27126
=1
X 0x00 < E < X) 23 |Normal
0xFF value = (1) * (1+ X by ;27) 2(e712D
=1

Relative Accuracy and ULP Considerations

The representation of infinitely real numbers with a finite number of bits requires an
approximation. This approximation can result in rounding errors in floating-point
computation. To measure the rounding errors, the floating-point standard uses relative
error and ULP (Units in the Last Place) error.

ULP

If the exponent range is not upper-bounded, Units in Last Place (ULP) of a floating-point
number x is the distance between two closest straddling floating-point numbers a and b
nearest to x. The IEEE-754 standard requires that you correctly round the result of an
elementary arithmetic operation such as addition, multiplication, and division. A correctly
rounded result means that the rounded result is within 0.5 ULP of the exact result.

An ULP of one means adding a 1 to the decimal value of the number. The table shows the
approximation of pi to nine decimal digits and how the ULP of one changes the
approximate value.

Floating-point Value in IEEE-754 representation for Single [ULP

number decimal Types

3.141592741 1078530011 0/10000000| 0
10010010000111111011011

10-73

10 Model Design for HDL Code Generation

10-74

Floating-point Value in IEEE-754 representation for Single [ULP

number decimal Types

3.141592979 1078530012 0110000000| 1
10010010000111111011100

The gap between two consecutively representable floating-point numbers varies

according to magnitude.

Floating-point Value in IEEE-754 representation for Single [ULP

number decimal Types

1234567 1234613304 0/10010011] 0
00101101011010000111000

1234567.125 1234613305 0/10010011] 1
00101101011010000111001

Relative Error

Relative error measures the difference between a floating-point number and the
approximation of the real number. Relative error returns the distance from 1.0 to the next
larger number. This table shows how the real value of a number changes with the relative

accuracy.

Floating-point |Value in IEEE-754 representation for |ULP |Relative

number decimal Single Types error

8388608 1258291200 |0|10010110| 0 1
00000000000000000000000

8388607 1258291198 |0]10010101| 1 2.3841858e-
11111111111111111111110 07

1 1065353216 |0]01111111| 0 1.1920929e-
00000000000000000000000 07

2 1073741824 |0/10000000| 1 2.3841858e-
00000000000000000000000 07

The magnitude of the relative error depends on the real value of the floating-point

number.

In MATLAB, the eps function measures the relative accuracy of the floating-point number.
For more information, see eps.

Numeric Considerations with Native Floating-Point

ULP of Native Floating-Point Operators

Native floating point support in HDL Coder follows IEEE standard of floating-point
arithmetic.

All basic arithmetic operations such as addition, subtraction, multiplication, division, and
reciprocal are mandated by IEEE to have zero ULP error. When you perform these
operations in native floating-point mode, there is no difference in numerical results
between the Simulink model and the generated HDL code.

All advanced math operations such as exponential, logarithm, and trigonometric
operators have machine-specific implementation behaviors because these operators use
recurring taylor series and remez expression based implementations. When you use these
operators in native floating-point mode, there can be relatively small differences in
numerical results between the Simulink model and generated HDL code.

You can measure the difference in numerical results as a relative error or ULP. A nonzero
ULP for these operators does not mean noncompliance with the IEEE standard. A ULP of
one is equivalent to a relative error of 10”-7. You can ignore such relatively small errors
by specifying a custom tolerance value for the ULP when generating a HDL test bench.
For example, you can specify a custom floating-point tolerance of one ULP to ignore the
error when verifying the generated code. For more information, see FPToleranceStrategy
and FPToleranceValue.

Most basic math operators and some advanced math operations have a zero ULP in native
floating-point mode. Native floating point support in HDL Coder makes the best attempt
to implement these operators to the lowest ULP possible. The table enumerates the ULP
of floating-point operators that have a nonzero ULP. In addition to these operators, the
HDL Reciprocal block has a ULP of five.

10-75

10 Model Design for HDL Code Generation

Math Functions

Simulink Blocks Units in the Last Place (ULP) error

exp

log

log10

10™u

pow

e el e el)

hypot

Trigonometric Functions

Simulink Blocks Units in the Last Place (ULP) error

sin

CoS

tan

asin

acos

atan

atan2

sinh

cosh

tanh

asinh

acosh

atanh

NI W W R P, RO NN WINDN

sincos

Considerations
For certain floating-point input values, some blocks can produce simulation results that

vary from the MATLAB simulation results. To see the difference in results, before you
generate code, enable generation of the validation model. In the Configuration

10-76

See Also

Parameters dialog box, on the HDL Code Generation pane, select the Generate
validation model check box.

If you perform computations that involve complex numbers and an exception such as
Inf or NaN, the HDL simulation result with native floating point can potentially vary
from the Simulink simulation result. For example, if you multiply a complex input with
Inf, the Simulink simulation result is Infi whereas the HDL simulation result is NaN
+Infi.

If you compute the square root or logarithm of a negative number, the HDL simulation
result with native floating point is 0. This result matches the simulation result when
you verify the design with a SystemVerilog DPI test bench. In Simulink, the result
obtained is NaN. According to the IEEE-754 standard, if you compute the square root
or logarithm of a negative number, the result is that number itself.

If the input to the Direct Lookup Table (n-D) is of floating-point data type, but the
elements of the table use a smaller data type, the generated HDL code can be
potentially incorrect. For example, the input is of single type and the elements use
uint8 type. To obtain accurate HDL simulation results, use the same data type for the
input signal and the elements of the lookup table.

If you use the Cosine block with the inputs -7.729179E28 or 7.729179E28, the
generated HDL code has a ULP of 4. For all other inputs, the ULP is 2.

When you use a Math Function block to compute mod(a,b) or rem(a,b), where a is
the dividend and b is the divisor, the simulation result in native floating-point point
mode varies from the MATLAB simulation result in these cases:

If b is integer and BN 232 the simulation result in native floating-point mode is
zero. For such signiﬁcant difference in magnitude between the numbers a and b,
this implementation saves area on the target FPGA device.

If 2 is close to 222, the simulation result in native floating-point mode can
po{éntially vary from the MATLAB simulation results.

See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

10-77

10 Model Design for HDL Code Generation

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-
94

10-78

Latency of Floating Point Operators

Latency of Floating Point Operators

In this section...

“Math Operations” on page 10-79
“Trigonometric and Exponential Operations” on page 10-81

“Comparisons and Conversions” on page 10-83

HDL Coder native floating-point support can generate HDL code from your floating-point
design. HDL Coder supports several Simulink blocks and math and trigonometric
functions in native floating-point mode. These tables show the default latency values of
these floating-point operations. You can customize these latency values. You can also
customize the latency settings for most blocks and design for trade-offs between latency
and Fmax by specifying custom latency values. To learn more, see “Latency
Considerations with Native Floating Point” on page 10-85.

You can see the latency of these floating point operators in MATLAB by entering these
commands.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');
nfpconfig.IPConfig

Math Operations

This table shows the list of basic math operations that are supported with native floating-
point in HDL Coder and their latency information. The basic math operations include
addition, subtraction, multiplication, and so on. You can use most of these blocks with
both single and double data types. If you do not see an entry of double data type
corresponding to a block, it means that the block does not support double types.

10-79

10 Model Design for HDL Code Generation

Basic Math Operators

Simulink Blocks Data Type Minimum Output |[Maximum Output
Latency Latency
Add Double 6 11
Single 6 11
Subtract Double 6 11
Single 6 11
Product Double 6 9
Single 6 8
Divide Double 31 61
Single 17 32
Reciprocal Double 30 60
Single 16 31
Multiply-Add Single 8 14
Round Single 5
Fix Single 3
Unary Minus Double - -
Single - -
Sign Single - -
Abs Double - -
Single - -

This table shows the math functions that are supported with native floating-point in HDL
Coder and their latency information. You can select the function using the Function
setting of the Math Function block. You can use these blocks with single data types.
Double types are unsupported for the blocks.

10-80

Latency of Floating Point Operators

Math Functions

Simulink Blocks Minimum Output Latency |Maximum Output Latency
HDL Reciprocal 14 21
Rem 15 24
Mod 16 26
Sqrt 16 28
Reciprocal Sqrt 16 30
Hypot 17 33

Trigonometric and Exponential Operations

This table shows the trigonometric operations that are supported with native floating-
point in HDL Coder and their latency information. You can select the function using the
Function setting of the Trigonometric Function block. You can use these blocks with
single data types. Double types are unsupported for the blocks.

10-81

10 Model Design for HDL Code Generation

10-82

Trigonometric Functions

Simulink Blocks Minimum Output Latency |Maximum Output Latency
Sin 27 27
Cos 27 27
Tan 33 33
Sincos 27 27
Asin 17 23
Acos 17 23
Atan 36 36
Atan2 42 42
Sinh 18 30
Cosh 17 27
Tanh 25 43
Asinh 94 94
Acosh 93 93
Atanh 67 67

This table shows the exponential operations that are supported with native floating-point
in HDL Coder and their latency information. You can select the function using the

Function setting of the Math Function block. You can use these blocks with single data
types. Double types are unsupported for the blocks.

Exponent/Logarithm/Power

Simulink Blocks Minimum Output Latency [Maximum Output Latency
Exp 16 26
Pow 33 54
Pow10 16 26
Log 20 20
Log10 17 27

See Also

Comparisons and Conversions

This table shows operations related to comparing of numbers and data type conversions
that are supported with native floating-point in HDL Coder and their latency information.
You can use these blocks with both single and double data types except for the
MinMax block. This block does not support double data types. For the Data Type
Conversion block, you can convert between double and single data types, and between
single and other fixed-point data types.

Comparisons and Conversions

Simulink Blocks Data Type Minimum Output |Maximum Output
Latency Latency
Data Type Double 3 6
Conversion Single 6 6
Relational Operator |Double 1 3
Single 1 3
MinMax Single 3 3

See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

10-83

10 Model Design for HDL Code Generation

. “Simulink Blocks Supported with Native Floating-Point” on page 10-106

10-84

Latency Considerations with Native Floating Point

Latency Considerations with Native Floating Point

HDL Coder™ native floating-point technology can generate HDL code from your floating-
point design. Native floating-point operators have a latency. When you generate HDL
code, the code generator figures out this latency and adds matching delays to balance
parallel paths.

View Latency of a Floating-Point Operator

Open the hdlcoder nfp delay allocation Simulink™ model. The model uses
single data types and computes the square root. The model has a parallel path to
illustrate how the code generator balances delays.

load system('hdlcoder nfp delay allocation')
open_system('hdlcoder nfp delay allocation/DUT")

D

To generate HDL code:

1 Right-click the DUT Subsystem and select HDL Code > Generate HDL for
Subsystem.

2 To see the generated model after HDL code generation, at the command line, enter
gm_hdlcoder nfp delay allocation.

10-85

10 Model Design for HDL Code Generation

10-86

ingle
Co—

Y

e (D

Sqrt

seml)

dalayMatch

The NFP Sqrt block is the floating-point operator corresponding to the Sqrt block in your
model, and has a latency of 28. The code generator determines this latency and adds a
matching delay of length 28 in the parallel path. To see the latency of the square root
operation, double-click the NFP Sqrt block. The Delay length of the Sqrt_pd1 block
corresponds to the operator latency.

You can customize the latency of your design. Use custom latency settings to design for
trade-offs between latency and throughput. You can then optimize your design
implementation on the target FPGA device for area and speed. Customize the latency by
using:

» Latency Strategy setting: Specify whether to map your entire Simulink™ model or
individual blocks in your model to maximum, minimum, or zero latency of the floating-
point operator.

* Custom Latency: You can specify a custom latency for certain blocks that you use in
your Simulink™ model. The custom latency setting can take values from zero to the
maximum latency of the floating-point operator.

* Oversampling factor: Increasing the Oversampling factor operates the design at a
faster clock rate and absorbs the clock-rate pipelines with the latency of the floating-
point operator.

Latency Considerations with Native Floating Point

* Delay blocks in the model: If your Simulink model has a latency, HDL Coder™ can
absorb some or all of the latency with the native floating-point implementation.

Latency Strategy Setting for Model

You can specify the latency strategy setting for an entire model or for individual blocks in
your model.

To specify this setting for a model:

1 Inthe hdlcoder nfp delay allocation model, right-click the DUT Subsystem
and select HDL Code > HDL Coder Properties.

2 Onthe HDL Code Generation > Global Settings > Floating Point Target tab, for
Library, select Native Floating Point, and then for Latency Strategy, select MAX,
MIN, or ZERO.

Additional settings
General Ports Coding style Coding standards Diagnostics Floating Point Target
Floating Point IP Library:

Library: |Mative Floating Point -

Library Settings:

Latency Strategy: |MAX | - |
MaAX
Handle Denorn MIN
ZERO
Algorithm Choice:
Mantissa Multiply Strategy: |Full Multiplier -

To specify this setting from the command line:

* Create a hdlcoder.FloatingPointTargetConfig object for native floating point
by using the hdlcoder.createFloatingPointTargetConfig function.

10-87

10 Model Design for HDL Code Generation

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT");
hdlset param('hdlcoder nfp delay allocation', 'FloatingPointTargetConfiguration', nfpce

» Specify the latency strategy by using the LatencyStrategy property of the
nfpconfig object.

nfpconfig.LibrarySettings.LatencyStrategy = 'MAX'

nfpconfig =
FloatingPointTargetConfig with properties:

Library: 'NativeFloatingPoint'
LibrarySettings: [1x1 fpconfig.NFPLatencyDrivenMode]
IPConfig: [1x1 hdlcoder.FloatingPointTargetConfig.IPConfig]

To see the latency information, generate HDL code and then open the generated model.
To open the generated model, enter the command
gm_hdlcoder nfp delay allocation.

Custom Latency Strategy for Blocks

For blocks in your Simulink™ model, you can selectively customize the latency strategy.
By default, the blocks inherit the latency strategy setting you specify for the model. For
certain blocks, you can specify a custom latency value that is between zero and the
maximum latency of the floating-point operator.

By specifying a custom latency, you can customize your design for trade-offs between:

* Clock frequency and power consumption: A higher latency value increases the
maximum clock frequency (Fmax) that you can achieve, which increases the dynamic
power consumption.

* Oversampling factor and sampling frequency: A combination of higher latency value
and higher oversampling factor increases the Fmax that you can achieve but reduces
the sampling frequency.

To learn more about this setting and how to specify the latency strategy for a block, see
LatencyStrategy.

For example, if you have an Add block in the parallel path in your model, you can specify
a custom latency value of 2 for the Add block by entering these commands.

10-88

matlab:helpview(fullfile(docroot,'hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_a99b0822-f2a6-4f5b-aca9-7f7251a67c7c'))

Latency Considerations with Native Floating Point

load system('hdlcoder nfp delay allocation custom')

open_system('hdlcoder nfp delay allocation custom')

hdlset param('hdlcoder nfp delay allocation custom/DUT/Add', 'LatencyStrategy', 'Custom'
hdlset param('hdlcoder nfp delay allocation custom/DUT/Add', 'NFPCustomLatency',2)

J

C- B In1 Out?

¥

J

G- | In2 Outz

¥

DuUT

To see the latency information, generate HDL code and then open the generated model.
To open the generated model, enter the command

gm_hdlcoder nfp delay allocation custom. In the generated model, you see that
the NFP Add block has a latency of 2.

Add_pd1

1

Oversampling Factor

When you design the blocks in your Simulink™ model at the data rate, specify an
Oversampling factor greater than one. The Oversampling factor inserts pipeline
registers at a faster clock rate, which improves clock frequency and reduces area usage.
To learn more about clock-rate pipelining, see Clock Rate Pipelining.

To see the effect of Oversampling factor on the model, in the
hdlcoder nfp delay allocation model:

10-89

matlab:helpview(fullfile(docroot,'hdlcoder/ug/clock-rate-pipelining.html'))

10 Model Design for HDL Code Generation

1 Add a Delay block with Delay length 1 at the output of the Sqrt block.
2 Right-click the DUT and select HDL Code > HDL Coder Properties.

3 Onthe HDL Code Generation > Global Settings pane, enter a value of 40 for
Oversampling factor.

Model Referencing ~| Clock settings
Simulation Target
b Code Generation Reset type: Asynchronous -
*» Coverage Clock input port: clk
¥ HDL Code Generation
- Reset input port: reset
Global Settings
Target and Optimizations Oversampling factor: |40
Test Bench
EDA Tool Scripts v | Additional settings

After HDL code generation, the generated model shows the NFP Sqrt block operating at
a clock rate that is 40 times faster than the Sqrt block in your model. The NFP Sqrt
block absorbed the Delay block in your Simulink™ model. The Delay block now operates
at the clock rate. This implementation saves area by absorbing the additional latency, and
improves timing by operating at the faster clock rate.

inrepeat Sart Delay1

single D2 single D1 single D1_[*" [single D2
single D1 ~ |singie D1 \ |single 01 Repeal =
GO e Vi T after HDL code oo

=_® Generation »_2)

Original model Generated model

Delay Absorption in the Model

If your Simulink™ model has a Delay block with sufficient Delay length adjacent to an
operator, HDL Coder™ absorbs the delays as part of the operator latency.

10-90

Latency Considerations with Native Floating Point

@ single

Note: To absorb delays, make sure that you group the delays adjacent to the
block.

If the Delay length is equal to the latency of the floating-point operator, HDL Coder™
absorbs the delays and does not introduce any additional latency.

In the hdlcoder nfp delay allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay
length to 28.
Generate HDL code for the DUT Subsystem.

3 After HDL code generation, at the command line, enter
gm_hdlcoder nfp delay allocation to open the generated model.

. . single NFP
— I I -—1 — 1
Vi e ez PR) After HDL code -,
i Sqrt
>
L ED Generation *(2)
Criginal model Generated model

In the generated model, you see that the NFP Sqrt block absorbs the Delay block
adjacent to the Sqrt block in your original model. This delay absorption occurs because
the operator latency is equal to the Delay length. The code generator therefore avoids
the additional latency in your model.

If the Delay length is less than the operator latency, HDL Coder™ absorbs the available
delays and balances parallel paths by adding matching delays.

In the hdlcoder nfp delay allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay
length to 21.
Generate HDL code for the DUT Subsystem.

3 After HDL code generation, at the command line, enter
gm_hdlcoder nfp_delay allocation to open the generated model.

10-91

10 Model Design for HDL Code Generation

®single N \:___“ single single After HDL code (I)single » ,:;s L‘@
I =
»(2) Generation » 7 (2)

delayMatch

Original model Generated model

You see that the NFP Sqrt block absorbed a Delay of length 21 and added a matching

delay of length 7 in the parallel path because the square root operation requires 28
delays.

If the delay length is greater than the operator latency, the code generator absorbs a

certain number of delays equal to the latency and the excess delays appear outside the
operator.

In the hdlcoder nfp delay allocation model:

1 Double-click the Delay block at the output of the Sqrt block and change the Delay
length to 34.

Generate HDL code for the DUT Subsystem.

After HDL code generation, at the command-line, enter
gm_hdlcoder nfp delay allocation to open the generated model.

. . . single
n single single single _’- ’,
. After HDL code .
qrt
— ==

Generation

e»)

Original model Generated model

10-92

See Also

The NFP Sqrt block absorbed 28 delays because the square root operation has a latency
of 28. The excess latency of 6 is outside the operator.

See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67
. “Latency of Floating Point Operators” on page 10-79
. “Simulink Blocks Supported with Native Floating-Point” on page 10-106

10-93

10 Model Design for HDL Code Generation

Generate Target-Independent HDL Code with Native
Floating-Point

10-94

In this section...

“How HDL Coder Generates Target-Independent HDL Code” on page 10-94
“Generate Code” on page 10-95
“View Code Generation Report” on page 10-97

“Analyze Results” on page 10-98

HDL Coder native floating-point technology can generate target-independent HDL code
from your floating-point design. You can synthesize your floating-point design on any
generic FPGA or ASIC. Floating-point designs have better precision, higher dynamic
range, and a shorter development cycle than fixed-point designs. If your design has
complex math and trigonometric operations, use native floating-point technology.

How HDL Coder Generates Target-Independent HDL Code

This figure shows how HDL Coder generates code with the native floating-point
technology.

Generate Target-Independent HDL Code with Native Floating-Point

| &

Product

single

o —_—

—singlem-

—i il e

N\

DTC| ., som| UNPACK —£5E i)
s o IEEE —
Fl?\?;lg_ﬂ'lp:lm —\:\S_E@-’ PACK t—int32 —5|ng|e-."—
Implementation
.Eﬂ_anzszb UNPACK —@@—» 5
i S|
o XOR -
A B
Add | | Adust | Adust |
— 5F— | Exponents Exponent Exponent
T i
e Mg‘gt:llﬂflges = Mormalze | Round i Mormalze |-

The Unpack and Pack blocks convert the floating-point types to the sign, exponent, and
mantissa. In the figure, S, E, and M represent the sign, exponent, and mantissa
respectively. This interpretation is based on the IEEE-754 standard of floating-point

arithmetic.

The Floating-Point Algorithm Implementation block performs computations on the S,
E, and M. With this conversion, the generated HDL code is target-independent. You can
deploy the design on any generic FPGA or an ASIC.

Generate Code

You can generate code in the Configuration Parameters dialog box or at the command

line.

10-95

10 Model Design for HDL Code Generation

To specify the native floating-point settings and generate HDL code in the Configuration
Parameters dialog box:

1 Inthe HDL Code Generation > Floating Point pane, for Library, select Native
Floating Point.

» Coverage - - = = 5 -
General | Ports | Codin le | Ceding standards Diagnostics Floating Point Target \—
4 HODL Code Generation | I | g sty I 9 | 9 | 9 9
Global Settings Floating Point IP Library:
Target and Optimizations Library: INati\ne Floating Point - ‘
Test Bench
EDA Tool Scripts Library Settings:
Latency Strategy: MAX ~

[] Handle Denormals

Algorithm Choice:

Mantissa Multiplier Strategy: | Full Multiplier -

2 Specify the Latency Strategy to map your design to maximum or minimum latency
or no latency.

3 If you have denormal numbers in your design, select Handle Denormals. Denormal
numbers are numbers that have an exponent field equal to zero and a nonzero
mantissa field. See “Handle Denormals” on page 15-6.

4 If your design has multipliers, to specify how you want HDL Coder to implement the
multiplication operation, use the Mantissa Multiplier Strategy. See “Mantissa
Multiplier Strategy” on page 15-7.

5 To share floating-point resources, on the HDL Code Generation > Optimizations >
Resource Sharing tab, make sure that you select Floating-point IPs. The number
of blocks that get shared depends on the SharingFactor that you specify for the
subsystem.

6 Click Apply. You can now generate HDL code from your Simulink model. See also
“Generate HDL Code from Simulink Model”.

To generate HDL code at the command line, use the
hdlcoder.createFloatingPointTargetConfig function. You can use this function to
create an hdlcoder.FloatingPointTargetConfig object for the native floating-point
library.

nfpconfig = hdlcoder.createFloatingPointTargetConfig('NATIVEFLOATINGPOINT');
hdlset param('sfir single', 'FloatingPointTargetConfiguration', nfpconfig);

10-96

Generate Target-Independent HDL Code with Native Floating-Point

Optionally, you can specify the latency strategy and whether you want HDL Coder to
handle denormal numbers in your design:

nfpconfig.LibrarySettings.HandleDenormals
nfpconfig.LibrarySettings.LatencyStrategy

|0n|;
"MAX';

To learn how you can verify the generated code, see “Verify the Generated Code from
Native Floating-Point” on page 10-101.

View Code Generation Report

To view the code generation reports of floating-point library mapping, before you begin
code generation, enable generation of the Resource Utilization Report and Optimization
Report. To enable the reports, in the Configuration Parameters dialog box, on the HDL
Code Generation pane, enable Generate resource utilization report and Generate
optimization report. See also “Create and Use Code Generation Reports” on page 25-
2.

To see the list of native floating-point operators that HDL Coder supports and the floating-
point operators to which your Simulink blocks mapped to, in the Code Generation Report,
select Native Floating-Point Resource Report.

Native Floating-Point Resource Report for sfir_single

Summary of single precision native floating-point operators

adders

multipliers 4

A detailed report shows the various resources that the floating-point blocks use on the
target device that you specify. See also “Create and Use Code Generation Reports” on
page 25-2.

10-97

10 Model Design for HDL Code Generation

Detailed Report

Module nfp_add_comp

(Latency = "Max")

Multipliers 0
Adders/Subtractors 3
Registers 91
Total 1-Bit Registers 839
RAMs 0
Multiplexers 109
Static Shift operators 0
Dynamic Shift operators 2

To see the native floating-point settings that you applied to the model and whether HDL
Coder successfully generated HDL code, in the Code Generation Report, select Target

Code Generation.

Analyze Results

Floating point operators have a latency. If your Simulink model does not have delays,

when you generate HDL code, the code generator figures out the operator latency and
delay balances parallel paths. Consider this Simulink model that has a single input and

gives two single outputs.

10-98

Generate Target-Independent HDL Code with Native Floating-Point

In1

single single
— el sin (1)
Out1
Reciprocal Trigonometric
--‘1 single I Sqgrt Function
In1
single single
— T
. , Out2
Reciprocal Trigonometric

Function1

After HDL code generation, the generated model shows the native floating-point
operators corresponding to the blocks in your Simulink model. The blocks NFP math,
NFP Sqrt, and NFP trig correspond to the floating-point implementation of the
Reciprocal Sqrt, Reciprocal, and Trigonometric Function blocks respectively in your
original model.

NFP NFP
> math > trig

Reciprocal Trigonometric Function1

NFP NFP 5
g * g Mzt (1)

Qut1

Reciprocal Sqgrt Trigonometric Function delayMatch

In the generated model, you see that the code generator adds a latency for each floating-
point operator and adds a matching delay of length 2 to balance both paths. The operator
latency is equal to the Delay length of the Delay block inside that NFP block. For
example, if you double-click the NFP Sqrt block, you can get the latency by looking at
the Delay length of the Reciprocal Sqrt pd1 block. Here, the latency is 17.

10-99

10 Model Design for HDL Code Generation

O— 7

Int

Reciprocal Sgrt Reciprocal Sqrt_pd1

Block Parameters: Reciprocal Sqrt_pdl
Delay
Delay input signal by a specified number of samples.

State Attributes

Source

Delay length: Dialog ~| 17
Initial condition: |Dialog = | 0.0

4 T

H Cancel H

) o

Help

3

m

=

To learn more about the generated model, see “Generated Model and Validation Model”

on page 23-2.

See Also

Modeling Guidelines

“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions

hdlcoder.createFloatingPointTargetConfig

Properties

FPToleranceStrategy | FPToleranceValue

Related Examples

. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About

. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

. “Simulink Blocks Supported with Native Floating-Point” on page 10-106

10-100

Verify the Generated Code from Native Floating-Point

Verify the Generated Code from Native Floating-Point

In this section...

“Specify the Tolerance Strategy” on page 10-101
“Verify the Generated Code with HDL Test Bench” on page 10-102
“Verify the Generated Code with Cosimulation” on page 10-103

“Limitation” on page 10-105

HDL Coder native floating-point technology can generate target-independent HDL code
from your floating-point design. You can synthesize your floating-point design on any
generic FPGA or ASIC. Floating-point designs have better precision, higher dynamic
range, and a shorter development cycle than fixed-point designs. If your design has
complex math and trigonometric operations, use native floating-point technology.

When representing infinitely real numbers with a finite number of bits, there can be
rounding errors with the correct rounding range of values that the IEEE-754 standard
specifies. To measure the rounding errors, you can specify the floating-point tolerance
check based on relative errororulp error. For more information about these
rounding errors, see “Relative Accuracy and ULP Considerations” on page 10-73.

Specify the Tolerance Strategy

Before generating the testbench, specify the floating-point tolerance check for verifying
the generated code.

To specify the tolerance check in the Configuration Parameters dialog box:

1 [nthe HDL Code Generation > Testbench pane, for Floating point tolerance
check based on, specify relative errororulp error.

10-101

10 Model Design for HDL Code Generation

10-102

Test bench data file name postfix: _data
Test bench reference postfix: _ref
Use file I/O to read/write test bench data:

Ignore output data checking (number of samples): 0

Floating point tolerance check based on: lulp error ']

relative error
Tolerance Value:

Simulation library path:

[Generate Test Bench l

2 Enter the Tolerance Value and click Apply. If you choose relative error, the
default is a tolerance value of 1e-07. If you choose ulp error, the default tolerance
value is zero. To learn more, see “Numeric Considerations with Native Floating-Point”
on page 10-71.

To specify the tolerance strategy at the command-line, use:

1 Specify the floating point tolerance check setting by using FPToleranceStrategy.

hdlset param('sfir single', 'FPToleranceStrategy', 'Relative'); % check for floati

hdlset param('sfir single', 'FPToleranceStrategy', 'ULP'); % check for floati
2 Based on the FPToleranceStrategy setting, enter the tolerance value by using

FPToleranceValue.

hdlset param('FP _test 16a', 'FPToleranceValue', le-06); % if using relative error,

hdlset param('FP_test 16a', 'FPToleranceValue', 1); % 1if using ULP error, ente

Verify the Generated Code with HDL Test Bench

To generate an HDL test bench for verifying the generated code:

1 In the Configuration Parameters dialog box, on the HDL Code Generation > Test
Bench pane, in the Test Bench Generation Output section, select HDL test bench.

Verify the Generated Code from Native Floating-Point

3

In the Configuration section, make sure that Use file 1/0 to read/write test bench
data is enabled. To generate a test bench that uses constants instead of file I/0, clear
Use file 1/0 to read/write test bench data.

Click Apply, and then click Generate Test Bench.

To learn more about how HDL test bench generation works, see “Test Bench Generation”
on page 6-6.

Verify the Generated Code with Cosimulation

To generate a cosimulation model for verifying the generated code:

1

In the Configuration Parameters dialog box, on the HDL Code Generation > Test
Bench pane, for Cosimulation model for use with, select the cosimulation tool.

Click Apply, and then click Generate Test Bench.

After test bench generation, save the cosimulation model. In the model, double-click
the Compare subsystem.

Double click to turn 'OFF' all Assertions

Double click to turn 'on/off' all scopes

P cosim

in1

dut

from1 Assert_Out1

If you double-click the Assert Outl block, the block parameters show the
ToleranceValue that you specify.

To look inside the Assert Outl block, click the mask. If you specify the floating-
point tolerance check based on ulp error, the model shows a ULPChecker block.

10-103

10 Model Design for HDL Code Generation

cosim
dut ref
== L
err
cosim compare: Out1
{1 }]
cosim Ll in1
dut ref
C2) are l—b In2Cut! @
dut ULPChecker AssertEq

The ULPChecker has a MATLAB Function block that shows how HDL Coder accounts
for the ULP error when checking for numerical accuracy.

If you specify the floating-point tolerance check based on relative error, the
model shows a RelErrCheck block.

cosim
dut ref
=0 ——»
cosim err
(1} * compare: Out1
cosim P In1
dut ref
(2) e o b inp Ol > O
dut RelErrCheck AssertEq

RelerrCheck has a MATLAB Function block that shows how HDL Coder accounts
for the relative error when checking for numerical accuracy.

6 In the Simulink Editor for the model, start simulation. At the end of cosimulation,
check the compare: Outl scope.

10-104

See Also

The scope compares the difference between the result signal from the cosimulation
block and the reference signal from the DUT.

See also “Generate a Cosimulation Model” on page 27-40.

Limitation

When verifying the generated code, constructs that use IEEE standards prior to
VHDL-2008 are not supported with native floating-point.

See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

More About
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67
. “Numeric Considerations with Native Floating-Point” on page 10-71

. “Simulink Blocks Supported with Native Floating-Point” on page 10-106

10-105

10 Model Design for HDL Code Generation

Simulink Blocks Supported with Native Floating-Point

10-106

In this section...

“Supported Simulink Blocks with Double Data Types” on page 10-106
“Supported Simulink Blocks with Single Data Types” on page 10-107

“Simulink Block Restrictions” on page 10-109

HDL Coder native floating-point can generate target-independent HDL code from your
floating-point design. You can synthesize your floating-point design on any generic FPGA
or ASIC. Floating-point designs have better precision, higher dynamic range, and a
shorter development cycle than fixed-point designs. If your design has complex math and
trigonometric operations, use native floating-point technology.

To generate HDL code in native floating-point mode, use discrete sample times. Blocks
operating at a continuous sample time are not supported.

Supported Simulink Blocks with Double Data Types

HDL Coder supports basic math blocks with double data types in the native floating-
point mode.

+ Add

* Sum

* Subtract

* Product

* Gain

* Divide

* Reciprocal

* Relational Operator

» Data Type Conversion for conversion between single and double data types.
* Abs

* Unary Minus

Simulink Blocks Supported with Native Floating-Point

Supported Simulink Blocks with Single Data Types

HDL Coder supports several Simulink blocks including math and trigonometric blocks.
The “Math Operations” library contains blocks that are configured for HDL code
generation in the native floating-point mode.

In the Math Operations library, these blocks are supported:

* Sum

* Add

* Subtract

* Bias

* Gain

* Product

* Divide

* Abs

* Unary Minus

* MinMax

* Sum of Elements

* Product of Elements

* Dot Product

e Sqrt

* Reciprocal Sqrt

* Assignment

* Vector Concatenate

* Reshape

* Complex to Real-Imag
* Real-Imag to Complex
* Math Function

» Trigonometric Function except where Function is asinh, acosh, or atanh.

The table shows the list of supported blocks in other block libraries.

10-107

10 Model Design for HDL Code Generation

10-108

Block Library

Supported blocks

Discrete Zero Order Hold and the set of delay blocks including Integer
Delay and Tapped Delay.

HDL Operations All blocks are supported.

HDL RAMs All blocks are supported.

This library includes RAM blocks and the hdl.RAM System Object -
based blocks.

HDL Subsystems

All blocks are supported.

This library includes the State Control block and subsystems that
use enable and reset ports with the State Control block.

Logic and Bit

Compare To Constant and Compare To Zero

Operations
Lookup Tables Direct Lookup Table (n-D) block is supported.
Model Verification |All blocks are supported.

This library includes blocks such as Assertion and Check Dynamic
Range.

Model-Wide Utilities

All blocks are supported.
This library includes the DocBlock and Model Info blocks.

Ports & Subsystems

Enable, reset, input, and output ports, and model references, and
subsystem blocks are supported.

Signal Attributes All blocks are supported.
This library includes blocks such as Bus to Vector and Data Type
Propagation.
Signal Routing All blocks are supported.
This library includes blocks such as Mux and Bus Selector.
Sources Inport, Constant, and Ground blocks.
Sinks All blocks are supported.

This library includes blocks such as Display, To File, and Spectrum
Analyzer.

See Also

Simulink Block Restrictions

In native floating-point mode, the code generator does not support these blocks or block
architectures:
* Biquad Filter.
» Switch block with input to the control port as a floating-point type.
* Sum of Elements with complex input types.
* MATLAB Function and MATLAB System blocks.
* Dot Product in complex mode with Architecture as Tree or Linear.
» Discrete FIR Filter with Architecture other than Fully Parallel.
* Dead Zone and Dead Zone Dynamic.
* Polar to Cartesian.
» For the Data Type Conversion block:
* Stored Integer (SI) mode for Input and output to have equal setting is not
supported.

* The Saturate on integer overflow check box must be left cleared.

See Also

Modeling Guidelines
“Guidelines for Modeling with Native Floating Point” on page 20-13

Functions
hdlcoder.createFloatingPointTargetConfig

Properties
FPToleranceStrategy | FPToleranceValue

Related Examples
. “Single Precision Floating Point Support: Field-Oriented Control Algorithm”

10-109

10 Model Design for HDL Code Generation

More About
. “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67
. “Numeric Considerations with Native Floating-Point” on page 10-71

. “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94

10-110

Supported Data Types and Scope

Supported Data Types and Scope

In this section...

“Supported Data Types” on page 10-111
“Unsupported Data Types” on page 10-113
“Scope for Variables” on page 10-114

Supported Data Types

HDL Coder supports the following subset of MATLAB data types.

Types

Supported Data Types

Restrictions

Integer

e uint8, uintl6, uint32,
uint64

e 1int8,intl6, int32, int64

In Simulink, MATLAB Function block
ports must use numeric types sfix64
or ufix64 for 64-bit data.

10-111

10 Model Design for HDL Code Generation

Types

Supported Data Types

Restrictions

Real

* double
* single

HDL code generated with double or
single data types can be used for
simulation, but is not synthesizable.

When you have floating-point data
types, to generate synthesizable HDL
code, use:

* HDL Coder native floating-point
when you want to deploy the
generated code on any generic
ASIC or FPGA. To learn more, see
“Getting Started with HDL Coder
Native Floating-Point Support” on
page 10-67.

* FPGA floating-point target libraries
when you want to map the
Simulink model to an Intel or Xilinx
FPGA. To learn more, see
“Generate HDL Code for FPGA
Floating-Point Target Libraries” on
page 31-14.

Character

char

Logical

logical

Fixed point

* Scaled (binary point only)
fixed-point numbers

* Custom integers (zero binary
point)

Fixed-point numbers with slope (not
equal to 1.0) and bias (not equal to
0.0) are not supported.

Maximum word size for fixed-point
numbers is 128 bits.

Vectors

e unordered {N}
* row {1, N}
e column {N, 1}

The maximum number of vector
elements allowed is 27 32.

Before a variable is subscripted, it
must be fully defined.

10-112

Supported Data Types and Scope

Types

Supported Data Types

Restrictions

Matrices

{N, M}

Matrices are supported in the body of
the design algorithm, but are not
supported as inputs to the top-level
design function.

Do not use matrices in the testbench.

Structures

struct

Arrays of structures are not
supported.

For the FPGA Turnkey and IP Core
Generation workflows, structures are
supported in the body of the design
algorithm, but are not supported as
inputs to the top-level design function.

Enumerations

enumeration

Enumeration values must be
monotonically increasing.

If your target language is Verilog, all
enumeration member names must be
unique within the design.

Enumerations at the top-level DUT
ports are not supported with the
following workflows or verification
methods:

» TP Core Generation workflow

* FPGA Turnkey workflow

* FPGA-in-the-Loop

* HDL Cosimulation

Unsupported Data Types

The following data types are not supported:

* Cell array
* Inf

10-113

10 Model Design for HDL Code Generation

Scope for Variables

Global variables are not supported for HDL code generation.

10-114

Verilog HDL Import: Import Verilog Code and Generate Simulink Model

Verilog HDL Import: Import Verilog Code and Generate
Simulink Model

In this section...

“Why Use HDL Import?” on page 10-115
“HDL Import Requirements” on page 10-115
“How to Import HDL Code” on page 10-116
“Model Location” on page 10-116

“Errors and Warnings” on page 10-116

Use HDL import to import synthesizable HDL code into the Simulink modeling
environment. HDL import parses the input HDL file and generates a Simulink model. The
model is a block diagram environment that visually represents the HDL code in terms of
functionality and behavior.

Why Use HDL Import?

By importing the HDL code into Simulink, you can:

* Debug your HDL design in a model-based simulation environment. To debug internal
signals, designate the signals as test points and enable HDL DUT port generation for
the test point signals. When you generate code, HDL Coder propagates the signals to
the top level of your Simulink model.

* Improve the area and timing of your design on the target hardware by using model-
level and block-level speed and area optimizations such as resource sharing and
distributed pipelining.

* Deploy the design to FPGA and SoC platforms by using the Generic ASIC/FPGA and
IP Core Generation workflows in the HDL Workflow Advisor.

» Verify the functionality of the HDL design by generating a validation model or an HDL
test bench. If you have HDL Verifier™, you can verify the design by using
Cosimulation, SystemVerilog DPI Test Bench, or FPGA-in-the-Loop.

HDL Import Requirements

To generate a Simulink model, make sure that the HDL file you import:

10-115

10 Model Design for HDL Code Generation

10-116

» Is free of syntax errors.
» Is synthesizable.
» Uses supported Verilog constructs for the import.

How to Import HDL Code

To import the HDL code, at the MATLAB Command Window, run the importhd1l function.
For example, to import a Verilog file example. v, at the command line, enter:

importhdl('example.v"')

The function parses the HDL input file that you specified and, if successful, generates the
corresponding Simulink model, and provides a link to open the model.

Model Location

The generated Simulink model is named after the top module in the input HDL file that
you specify. The model is saved in the hdlimport/TopModule path relative to the
current working folder. For example, if you input a file named bitselectlhs.v to the
importhdl function that has bitselect as the top module name, the generated
Simulink model has the name bitselect.slx, and is saved in the hdlimport/
bitselect path relative to the current folder.

Mame
= hdlimport
= bitselect
[*&| bitselect.sl
| bitselectlhs.v

Errors and Warnings

When you run the importhd1 function, HDL import verifies the syntax and semantics of
the input HDL code. Semantic verification checks for module instantiation constructs,
unused ports in the module definition, the sensitivity list of an always block, and so on. If
HDL import fails, the code generator provides an error message and a link to the file
name and line number.

See Also

For example, consider this Verilog code for a bitselect module:

module bkitselect(a,c):

input [1:0] a:
output [1l:0] c;

c[d] = 0;
assign c[l] = al[2]:

endmodule

When you run the importhdl function, HDL import generates an error message:
Parser Error: bitselectlhs.v:6:2: error: Syntax Error near '['..

The error message indicates that there is a syntax error in line 6. To fix this error, change
the syntax to an assignment statement.

assign c[0] = 0;

See Also

Functions
checkhdl | makehdl

More About
. “Limitations of Verilog HDL Import” on page 10-124

10-117

10 Model Design for HDL Code Generation

Supported Verilog Constructs for HDL Import

10-118

In this section...

“Module Definition and Instantiations” on page 10-118
“Data Types and Vectors” on page 10-119

“Identifiers and Comments” on page 10-119
“Assignments” on page 10-120

“Operators” on page 10-120

“Conditional and Looping Statements” on page 10-121
“Procedural Blocks and Events” on page 10-121
“Other Constructs” on page 10-122

Use HDL import to import synthesizable HDL code into the Simulink modeling
environment. To import the HDL code, use the importhdl function. Make sure that the
constructs used in the HDL code are supported by HDL import.

These tables list the supported Verilog constructs that you can use when you import your
HDL code. If you use an unsupported construct, HDL import generates an error when
parsing the input HDL file. Verilog HDL import can sometimes ignore the presence of
certain constructs in the HDL code. To learn more, see the Comments section of the
table.

Module Definition and Instantiations

Verilog Constructs Supported? Comments

Library declaration No -

Configuration declaration |[No -

Module declaration Yes Multiple sample rates and
multiple clock inputs are not
supported.

Module parameter port list |Yes -

Port declarations Yes INOUT ports are not
supported.

Module without ports No -

Supported Verilog Constructs for HDL Import

Verilog Constructs Supported? Comments

Local parameter declaration |Yes -

Parameter declaration Yes -

Module instatiation Yes * Recursive module
instatiation is not
supported.

* Module instantiation
does not support
unconnected ports.

Data Types and Vectors

Verilog Constructs Supported? Comments
Net declaration (Wire, Yes -

Supply0, Supplyl)

Real declaration No -

String declaration No -

Vector declaration Yes -

Array support and array Yes -

indexinh

Reg declaration Yes -

Integer declaration Yes -

Identifiers and Comments

Verilog Constructs Supported? Comments

Lexical tokens (Whitespace, |Yes -
operator, comment)

Identifiers (Simple, Yes -
Escaped)

System Functions ($signed, |Yes -
$unsigned)

10-119

10 Model Design for HDL Code Generation

10-120

Verilog Constructs Supported? Comments

Attribute instances No HDL import ignores these
constructs.

Comments No HDL import ignores these
constructs.

Numbers (Decimal, Binary, |Yes -

Hexadecimal, and Octal)

Compiler directives Yes -

("define, undef, "ifndef,

“else if)

Assignments

Verilog Constructs Supported? Comments

Continuous assignment Yes =

Blocking assignment Yes -

Non-blocking assignment Yes -

Procedural assignment Yes -

(Always block)

Operators

Verilog Constructs Supported? Comments

Arithmetic operators (+, -, *, | Yes -

** [, <<<, >>>)

Logical operators (<<, Yes =

>>l !l &&I | |I ==I !=)

Relational operators (>, <, |Yes -

>=’ <=, ==, !:)

Bitwise operators (~, &, |, |Yes =

/\, ~/\' /\~)

Unary operators (+, -) Yes Supported for restricted

data types

Supported Verilog Constructs for HDL Import

Verilog Constructs Supported? Comments

Power operators Yes Supported for restricted
data types

Conditional operators (?:) Yes -

Concatenation Yes -

Bit Select Yes -

Reduction operators (&, ~&, |Yes -

AN AN N
|l ~|l e or ~)

Conditional and Looping Statements

Verilog Constructs Supported? Comments
If-else statement Yes -
Conditional operators (?:) Yes -

For loop No -

Loop Generate construct No -
Conditional Generate No -

construct

Generate region No -

Genvar declaration No -

Case statement Yes -
Procedural Blocks and Events

Verilog Constructs Supported? Comments
Task declaration No -

Initial construct (ROM No -

modeling)

Sequential blocks Yes -

Block declarations Yes -

Event control statements Yes -

10-121

10 Model Design for HDL Code Generation

10-122

Verilog Constructs Supported? Comments

Function calls Yes HDL import does not
support recursive function
calls.

Task enable No -

Always construct Yes -

Function declaration Yes -

Other Constructs

Verilog Constructs Supported? Comments

Gate instantiation No -

Specparams No -

Specify block No -

Semantic verification Yes -

(unused ports, correct

module instantiation)

Clock bundle identification |Yes Multiple sample rates and
multiple clock signals are
not supported.

Register inference Yes -

RAM inference Yes -

ROM inference No -

Counter inference No -

Drive strength No -

See Also

Functions
checkhdl | makehdl

See Also

More About
. “Verilog HDL Import: Import Verilog Code and Generate Simulink Model” on page
10-115

. “Limitations of Verilog HDL Import” on page 10-124

10-123

10 Model Design for HDL Code Generation

Limitations of Verilog HDL Import

Use HDL import to import synthesizable HDL code into the Simulink modeling
environment. To import the HDL code, use the importhdl function. HDL import does not
support:

10-124

Importing of VHDL files.
Importing of Verilog files from a read-only folder.

Import of HDL files that use unsupported Verilog constructs. To learn more about the
supported constructs, see “Supported Verilog Constructs for HDL Import” on page 10-
118.

Generation of the preprocessing files in a read-only filesystem that parse the HDL
code you input to the importhdl function.

Attribute instances and comments, which are ignored.

(#)delay values, such as #25, which are ignored.

Implicit type conversions. If you perform implicit conversions in the HDL code, the
Simulink model that gets generated can fail to compile.

module NGL(IN A,
IN B,
OUT_R):
inmput [4:0] IN_&4;
input IN B;
output COUT_A;
parameter IN B AWD = 5'b10011;
assign OUT A = IN A == IN B AND & IN EB;
endmodule

To resolve this issue, instead of using an implicit assignment, you can split the
assignment operation as illustrated below.

Limitations of Verilog HDL Import

module NG1(IN &,
IN B,
OUT &) :

input [4:0] IN A;
input TN B;

output OUT A;

parameter TN B AND = 5'b1l0011;

assign OUT B = IN A == IN B AND & IN B;
wire dl;
assign dl = IN A == IN B A4ND ;

agsgign OUT A = dl & IN B:

endmodule

This code illustrates another example of how implicit type conversion can occur.

round constant

module roonst (i, ro):
input [23:0] 1i:
output reg [€3:0] rc:»

always E (i)
begin
rc = 0;
end
endmodule

This issue is not a limitation of Verilog import. the Verilog HDL language treats
constants without bit lengths as 32-bit integers. To resolve this issue, explicitly assign
rc as a 64-bit constant value.

10-125

10 Model Design for HDL Code Generation

10-126

rc = 64'do

Enumeration data types.
More than one clock signal.
Modules that are multirate.

Multiport Switch inferrence with more than 1024 inputs. If you specify more than
1024 inputs to a Multiport Switch block that gets inferred from the Verilog code,
Verilog import generates an error.

ROM detection fom the Verilog code.
Counter detection from the Verilog code.

Latch detection. Presence of latches in the HDL code can result in algebraic loops in
the generated Simulink model and result in model compilation failures. For example,
when you import this Verilog code, the if-condition is inferred as a Switch block. The
block has a true path that is specified in the code. The output of the Switch block is
fed back directly as input to the false path which results in an algebraic loop. It is
recommended that you specify all branches in an if-else condition or in case
statements.

module testAlgebraicLoop (input cond, input [2:0] inl,
output reg [2:0] outl):

alwaysiE (")
begin
if (cond) begin
outl = inl;
end
end
endmodule

Partial and complete assignment to the same variable in the Verilog code. When you
assign a single variable, use either complete assignment or partial assignment.

For example, this code shows complete assignment to the variable outl reg. This
Verilog construct is supported.

Limitations of Verilog HDL Import

hndule testCompletefAssign (input [2:0] imnl,in2,
input cond,clk,
output [2:0] outl):;
reg [2:0] outl reg :

alwaysiE (")
begin
if(cond) begin
cutl reg = 3'd0;
end
else begin

outl reg = inl & in2;
end
end
assign outl = outl reg:
endmodule

This example shows another Verilog code that performs partial assignment to the
variable outl reg. This construct is also supported.

10-127

10 Model Design for HDL Code Generation

hndule testPartialissign(input [2:0] inl,in2,
input cond,clk,
output [2:0] outl):;
reg [2:0] outl reg :

alwaysi (posedge clk)
begin
if(cond) begin
cutl reg[O0] = 1'b0;
outl reg[l] = 1'kO;
cutl reg[2] = 1'k0;
end
else begin
outl reg[d] = inl[0] &£ in2[0]:
outl reg[l] = inl[l] & in2[1]:
outl reg[2] = inl[2] & in2[2]:
end
end
assign outl = outl reg:
endmodule

This example shows the Verilog code that performs both partial assignment and
complete assignment to the variable outl reg. This construct is not supported.
Importing the code generates an error.

10-128

Limitations of Verilog HDL Import

module testPartialAndCompletefssign(input [2:0] inl,inZ,
input cond, input clk,
ocutput [2:0] outl):
reg [2:0] outl reg ;

alwaysi (posedge clk)

begin
if (cond) kegin
outl reg[0] = 1'b0;
outl reg[l] = 1'bB0O;

outl reg2] = 1'b0O;
end
el=se begin

outl reg = inl & ind
end
end
assgign outl = cutl reg;
endmodule

* Performing operations on clock, reset, or clock enable signals in the Verilog code.
When you define signals using names such as clk, rst, and enb, HDL import infers
these signals to be the clock, global reset, and clock enable signals. For example, this
Verilog code uses an explicit assignment with the clock signal clk. This construct is
not supported.

10-129

10 Model Design for HDL Code Generation

module testOperationOnClkBundle (input clk,input [2:0] inl,

ocutput reg [2:0] outl, output out2):

reg [2:0] outl reg:
alwaysk (posedge clk)

begin
outl reg <= inl;
end
assign out2 = clk z& 1'B71;
endmodule

10-130

» Sensitivity of clock or reset signal to different clock edges or different reset edges
inside the same module. This means that you cannot have one always block with the
clock signal sensitive to the positive edge and the other always block with the clock
signal sensitive to the negative edge inside the same module.

Limitations of Verilog HDL Import

module testMultipleClockEges (input clkJ
input [2:0] inl,in2,
ocutput [2:0] outl, out2):;

reg [2:0] outl reg,outl reg;

; clk sensitive to posedge
alwaysiE (posedge clk)
bkegin

outl reg <= inl £& inZ;
end

y clk sensitive to negedge
alwaysi (negedge clk)
begin

outl reg - inz inl;

end

assign outl Dutl_IEg:

asgsign outl ocutl reg;

endmodule

Realization of synchronous and asynchronous circuits inside the same module.

10-131

10 Model Design for HDL Code Generation

module testAmbiguosClock(input clk, reset,
input [2:0] inl,in2,
output [2:0] outl, out2):

reg [2:0] outl reg,outld reg;

synchronous always block

alwaysi (posedge clk)

bkegin
outl reg <= inl && inZ;
end
asynchronous alwayvs block
alwaysk (posedge clk or posedge reset)
begin
ocucZ reg <= inz inl;
end

assign outl Dutl_reg:

assign outl ouc2 reg;

endmodule

* Initialization of multiple RAMs that are inferred in the same module. For example, this
Verilog code infers sample store0 and sample storel as RAMs. This construct is
not supported.

10-132

Limitations of Verilog HDL Import

always E (posedge clk)

begin
if (write_ enakle)
begin
sample storel[write address] <= write_data;
end
read datal <= sample storel[read address0d]:
end

always [[(posedge clk)
kbegin
if (write_enable)

bkegin
sample storel[write address] <= write data;
end
read datal <= sample storel[read addressl]:
end

Multiple assignments to the same variable in the true or false path of a Switch block
that gets inferred. For example, this Verilog code uses multiple assignments to the
variable outl in the false branch, which is not supported.

10-133

10 Model Design for HDL Code Generation

module testSwitchMuxing (input cond, input [2:0] inl,
output reg [2:0] outl):

alwaysiE (")
begin
if {cond) kegin
outl = inl;
end
elzse begin
outl = 3'd2;
outl = 3'dl;
end
end
endmodule

See Also

Functions
checkhdl | makehdl

More About
. “Verilog HDL Import: Import Verilog Code and Generate Simulink Model” on page
10-115

10-134

Code Generation Options in the HDL
Coder Dialog Boxes

11 cCode Generation Options in the HDL Coder Dialog Boxes

Set HDL Code Generation Options

11-2

In this section...

“HDL Code Generation Options in the Configuration Parameters Dialog Box” on page 11-
2

“HDL Code Generation Options in the Model Explorer” on page 11-3

“Code Menu” on page 11-4

“HDL Code Options in the Block Context Menu” on page 11-5

“The HDL Block Properties Dialog Box” on page 11-6

HDL Code Generation Options in the Configuration Parameters
Dialog Box

The following figure shows the top-level HDL Code Generation pane in the
Configuration Parameters dialog box. To open this dialog box, select Simulation >
Model Configuration Parameters in the Simulink window. Then select HDL Code
Generation from the list on the left.

Set HDL Code Generation Options

& Configuration Parameters: sfir_fixed/Configuration (Active)

Q

Saolver
Data Import/Export
Math and Data Types
» Diagnostics
Hardware Implementation
Maodel Referancing
Simulation Target
» Code Generation
» Coverage
¥ HDL Code Generation
Target
Optimization
Floating Point
Global Settings
Report
Test Bench
EDA Tool Scripts

Set Basic Options

Generate HDL for: |sfir_fixed/symmetric_fir
Language: WVHDL
Folder: hdlsrc

Code generation output

Generate HDL code

[| Generate validation model

Restore Model Defaults

OK Cancel Help Apply

Browse...

Run Compatibility Checker

Generate

Note When the HDL Code Generation pane of the Configuration Parameters dialog box
appears, clicking the Help button displays general help for the Configuration Parameters

dialog box.

HDL Code Generation Options in the Model Explorer

The following figure shows the top-level HDL Code Generation pane as displayed in the
Contents pane of the Model Explorer.

11-3

11 cCode Generation Options in the HDL Coder Dialog Boxes

To view this dialog box:

1 Open the Model Explorer.

Select your model's active configuration set in the Model Hierarchy tree on the left.

3 Select HDL Code Generation from the list in the Contents pane.

Model Explarer

File | Edit View Tools Add Help
FL 3

Search: by Name ~ Name:

Model Hierarchy

4 PY Simulink Root
E sase Workspace
& configuration Preferences
Pl sfir_fixed*
[l Model Workspace
& code for stir_tixea
(2) Advice for sfir_fixed
[simulink Design Verifier results
€3 configuration (Active)
[2] Run Demo
[P2] symmetric_fir

2]
M Search

== Contents of: sfir_fixed/Configuration (only)

Column View: |Default ~ | Show Details

Filter Contents

9 object(s)

o

Name

@ solver

) Data ImporvExport

0} Optimization

@} Diagnostics

@ Hardware Implementation
@ Model Referencing

@ simulation Target

0} Code Generation

@ HDL Code Generation

Blodcype

Contents Search Results

HDL Code Generation

General | Global Settings | TestBench

EDA Tool Scripts |

[E=8 B x|

Target

Generate HDL for: [sfir_

Language: [vroL

Folder: hd_prjthdisrc

Code generation output

Generate HDL code

[] Generate validation model

Code generation report

[] Generate traceshility report.

[] Generate resource utilization report
[7] Generate optimization report

[7] Generate model Web view

Browse...

Restore Factory Defauits

"]

Run Compatibility Checker

i

Revert

Code Menu

The Code > HDL Code submenu provides shortcuts to the HDL code generation options.
You can also use this submenu to initiate code generation.

Options include:

+ HDL Workflow Advisor: Open the HDL Workflow Advisor.

11-4

Set HDL Code Generation Options

Options: Open the HDL Code Generation pane in the Configuration Parameters
dialog box.

Generate HDL: Initiate HDL code generation; equivalent to the Generate button in
the Configuration Parameters dialog box or Model Explorer.

Generate Test Bench: Initiate test bench code generation; equivalent to the
Generate Test Bench button in the Configuration Parameters dialog box or Model
Explorer. If you do not select a subsystem in the Generate HDL for menu, the
Generate Test Bench menu option is not available.

Add HDL Coder Configuration to Model or Remove HDL Coder Configuration
from Model: The HDL configuration component is internal data that HDL Coder
creates and attaches to a model. This component lets you view the HDL Code
Generation pane in the Configurations Parameters dialog box, and use the HDL Code
Generation pane to set HDL code generation options. If you need to add or remove
the HDL Code Generation configuration component to or from a model, use this option
to do so. For more information, see “Add or Remove the HDL Configuration
Component” on page 25-30.

HDL Code Options in the Block Context Menu

When you right-click a block that HDL Coder supports, the context menu for the block
includes an HDL Code submenu. The coder enables items in the submenu according to:

The block type: for subsystems, the menu enables some options that are specific to
subsystems.

Whether or not code and traceability information has been generated for the block or
subsystem.

The following summary describes the HDL Code submenu options.

Option Description Availability
Check Subsystem Runs the HDL compatibility Available only for subsystems.
Compatibility checker (checkhdl) on the

subsystem.

Generate HDL for |Runs the HDL code generator |Available only for subsystems.
Subsystem (makehdl) and generates code

for the subsystem.

11-5

11 cCode Generation Options in the HDL Coder Dialog Boxes

Option Description Availability
HDL Coder Opens the Configuration Available for blocks or
Properties Parameters dialog box, with the |subsystems.

top-level HDL Code Generation
pane selected.

HDL Block Opens a block properties dialog |Available for blocks or
Properties box for the block or subsystem. |subsystems.

See “Set and View HDL Block
Parameters” on page 21-67 for
more information.

HDL Workflow Opens the HDL Workflow Available only for subsystems.

Advisor Advisor for the subsystem.

Navigate to Code Activates the HTML code Enabled when both code and a
generation report window, traceability report have been

displaying the beginning of the |generated for the block or
code generated for the selected |subsystem.

block or subsystem. For more
information, see “Navigate
Between Simulink Model and
HDL Code by Using
Traceability” on page 25-5.

The HDL Block Properties Dialog Box

HDL Coder provides selectable alternate block implementations for many block types.
Each implementation is optimized for different characteristics, such as speed or chip
area. The HDL Properties dialog box lets you choose the implementation for a selected
block.

Most block implementations support a number of implementation parameters that let you
control further details of code generation for the block. The HDL Properties dialog box
lets you set implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

11-6

Set HDL Code Generation Options

i

W HOL Properties: Add ==

Implementation

Architecture Linear - ‘

Implementation Parameters
InputPipeline 0

CutputPipeline 0

(]34 H Cancel H Help Apply

There are a number of ways to specify implementations and implementation parameters
for individual blocks or groups of blocks. See “Set and View HDL Block Parameters” on
page 21-67 for detailed information.

11-7

HDL Code Generation Pane: General

* “HDL Code Generation Top-Level Pane Overview” on page 12-2
* “Target” on page 12-3
* “Code Generation Output” on page 12-6

12 HDL Code Generation Pane: General

HDL Code Generation Top-Level Pane Overview

12-2

The top-level HDL Code Generation pane contains buttons that initiate code generation
and compatibility checking, and sets code generation parameters.

Buttons in the HDL Code Generation Top-Level Pane

The buttons in the HDL Code Generation pane perform functions related to code
generation. These buttons are:

Generate: Initiates code generation for the system selected in the Generate HDL for
menu. See also makehdl.

Run Compatibility Checker: Invokes the compatibility checker to examine the system
selected in the Generate HDL for menu for compatibility problems. See also checkhdl.
Browse: Lets you navigate to and select the target folder to which generated code and
script files are written. The path to the target folder is entered into the Folder field.
Restore Factory Defaults: Sets model parameters to their default values.

Target

Target

In this section...

“Generate HDL for” on page 12-3
“Language” on page 12-4

“Folder” on page 12-5

This section contains parameters in the HDL Code Generation pane of the
Configuration Parameters dialog box. By using these parameters, you can specify the
Subsystem that you want to generate HDL code for, the target HDL language, and the
target folder into which code is generated.

Generate HDL for

Select the subsystem or model from which code is generated. The list includes the path to
the root model and to subsystems in the model. When you specify this parameter and
click the Generate button, HDL Coder generates code for the Subsystem that you specify.
By default, the HDL code is generated in VHDL language and into the hdlsrc folder.

Settings
Default: The top level subsystem in the root model is selected.

Command-Line Information

Property: HDLSubsystem

Type: character vector

Value: A valid path to your subsystem

Default: Path to the top level subsystem in root model

For example, you can generate HDL code for the symmetric fir subsystem inside the
sfir fixed model using either of these methods.

» Specify the subsystem using the property HDLSubsystem as an argument to makehdl.

makehdl('sfir fixed', 'HDLSubsystem', 'sfir fixed/symmetric fir')
* Pass in the path to the subsystem as an first argument to makehd1l.

makehdl('sfir fixed/symmetric fir')

See also makehd1l.

12-3

12 HDL Code Generation Pane: General

12-4

Language

Select the language (VHDL or Verilog) in which code is generated. The selected language
is referred to as the target language. When you specify the Language and click the
Generate button, HDL Coder generates code in that language for the Subsystem that is
specified by the Generate HDL for parameter. By default, the HDL code is generated in
VHDL language and into the hdlsrc folder.

The generated HDL code complies with these standards:

* VHDL-1993 (IEEE® 1076-1993) or later
* Verilog-2001 (IEEE 1364-2001) or later

Settings
Default: VHDL

VHDL

Generate VHDL code.
Verilog

Generate Verilog code.

Command-Line Information
Property: TargetLanguage
Type: character vector
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to generate Verilog code for the symmetric fir subsystem inside the
sfir fixed model, use either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', 'TargetlLanguage', 'Verilog')

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

Target

hdlset param('sfir fixed', 'TargetLanguage’', 'Verilog')
makehdl('sfir fixed/symmetric_ fir')

See also makehd1.

Folder

Enter a path to the folder into which code is generated. Alternatively, click Browse to
navigate to and select a folder. The selected folder is referred to as the target folder.
When you specify the Folder and click the Generate button, HDL Coder generates code
into that folder for the Subsystem that is specified by the Generate HDL for parameter.
By default, the HDL code is generated in VHDL language and into the hdlsrc folder.

Settings

Default: The default target folder is a subfolder of your working folder, named hdlsrc.
HDL Coder writes the generated files into this subfolder. The folder name can be a
complete path name, specified as a character vector.

Command-Line Information
Property: TargetDirectory

Type: character vector

Value: A valid path to your target folder
Default: 'hdlsrc'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to generate HDL code into a custom target folder for the symmetric fir
subsystem inside the sfir fixed model, use either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', 'TargetDirectory','C:/Temp/hdlsrc')

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'TargetDirectory','C:/Temp/hdlsrc')
makehdl('sfir fixed/symmetric fir')

See also makehd1.

12-5

12 HDL Code Generation Pane: General

Code Generation Output

12-6

In this section...

“Generate HDL code” on page 12-6

“Generate validation model” on page 12-8

This section contains parameters in the Code Generation Output section of the HDL
Code Generation pane of the Configuration Parameters dialog box. By using the
parameters in the Code Generation Output section, you can specify whether to
generate HDL code or the validation model or both the code and validation model.

Generate HDL code

Enable or disable HDL code generation for the model or Subsystem. To specify the
Subsystem that you want to generate HDL code for, use the Generate HDL for
parameter. Then, click the Generate button. By default, the HDL code is generated in
VHDL language and into the hdlsrc folder.

Settings
Default: On

|7On

Enable this setting to generate HDL code. If you select the Generate validation
model check box and click the Generate button, HDL Coder generates a validation
model along with the HDL code. You can use the validation model to verify functional
equivalence of the original model with the generated model.

I off

When you disable this setting, you cannot generate HDL code for the model. If you
select the Generate validation model check box and click the Generate button,
HDL Coder generates the validation model.

Command-Line Information
Property: GenerateHDLCode
Type: character vector

Value: 'on' | 'off'

Default: 'on'

Code Generation Output

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

By default, the GenerateHDLCode property is enabled. To generate code, use the
makehdl function. For example, this command generates HDL code for the
symmetric_ fir subsystem inside the sfir fixed model.

makehdl('sfir fixed/symmetric fir')

To specify whether to generate the validation model along with the HDL code, use this
property in conjunction with the GenerateValidationModel property.

hdlset param('sfir fixed', 'GenerateValidationModel','on');
makehdl('sfir fixed/symmetric fir')

Control Code Generation Output

Property: CodeGenerationOutput

Type: character vector

Value: 'GenerateHDLCode' |

'GenerateHDLCodeAndDisplayGeneratedModel' 'DisplayGeneratedModelOnly’
Default: 'GenerateHDLCode'

By default, HDL Coder creates a model when you generate HDL code, called the
generated model. The generated model uses HDL-specific block implementations, and it
implements the area and speed optimizations that you specify in your Simulink model.
The code generator creates the generated model but does not display the model by
default. To control display of the generated model, use the CodeGenerationOutput
property.

This example shows how to generate HDL code and then display the generated model
using makehdl.

makehdl('sfir fixed/symmetric_fir', ...
'CodeGenerationOutput', 'GenerateHDLCodeAndDisplayGeneratedModel')

If you specify DisplayGeneratedModelOnly, the code generator displays the generated
model but does not proceed to code generation.

See Also

* makehdl
* “Generated Model and Validation Model” on page 23-2

12-7

12 HDL Code Generation Pane: General

12-8

Generate validation model

Enable or disable generation of a validation model that verifies the functional equivalence
of the original model with the generated model. The validation model contains both the
original and the generated DUT models. You can use the generated DUT model to observe
the effect of block settings and optimizations such as resource sharing, streaming, and
delay balancing.

If you enable generation of a validation model, make sure that delay balancing is enabled
on the model. To set delay balancing on the model, in the HDL Code Generation >
Target and Optimizations > General tab, select the Balance delays check box. Delay
balancing keeps the generated DUT model synchronized with the original DUT model.
Validation fails when there is a mismatch between delays in the original DUT model and
delays in the generated DUT model.

Settings
Default: Off

|7On

Enable this setting to generate the validation model. By default, HDL Coder generates
code along with the validation model. To generate only the validation model, deselect
the Generate HDL code check box and then click the Generate button.

I off

Disable this setting when you do not want to generate the validation model. When you
click the Generate button, HDL Coder generates code for the model.

Command-Line Information
Property: GenerateValidationModel
Type: character vector

Value: 'on' | 'off"'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

By default, the GenerateHDLCode property is enabled. You can use this property in
conjunction with the GenerateValidationModel property to specify whether to
generate the validation model along with the HDL code. To generate both code and
validation model, enable the GenerateValidationModel property with makehdl.

Code Generation Output

hdlset param('sfir fixed', 'GenerateValidationModel','on');
makehdl('sfir fixed/symmetric fir')

If you want to generate only the validation model, disable the GenerateHDLCode
property and enable the GenerateValidationModel property with makehdl.

hdlset param('sfir fixed', 'GenerateValidationModel','on');
hdlset param('sfir fixed', 'GenerateHDLCode',off');
makehdl('sfir fixed/symmetric fir'

See Also

* makehdl
* “Balance delays” on page 14-3
* “Generated Model and Validation Model” on page 23-2

12-9

HDL Code Generation Pane: Target

* “Target Overview” on page 13-2
* “Tool and Device” on page 13-3
» “Target Frequency” on page 13-9

13 HDL Code Generation Pane: Target

Target Overview

The Target pane enables you to specify the target hardware settings.

13-2

Tool and Device

Tool and Device

In this section...

“Synthesis Tool” on page 13-3
“Family” on page 13-4
“Device” on page 13-5
“Package” on page 13-6
“Speed” on page 13-7

This section contains parameters in the Tool and Device section of the HDL Code
Generation > Target pane of the Configuration Parameters dialog box. By using the
parameters in this section, you can specify the synthesis tool, and then select the Family,
Device, Package, and Speed for your synthesis target.

Synthesis Tool

Specify the synthesis tool for targeting the generated HDL code. To use HDL Coder with
one of the supported third-party FPGA synthesis tools, add the tool to the system path
using the hdlsetuptoolpath function. When you specify the Synthesis Tool, HDL
Coder populates the Family, Device, Package, and Speed with default values for that
tool.

Settings
Default: No synthesis tool specified

The options are:

No synthesis tool specified

Select this option if you do not want to perform logic synthesis. You can generate HDL
code from your design.

Xilinx Vivado

Specity Xilinx Vivado as the synthesis tool.
Xilinx ISE

Specify Xilinx ISE as the synthesis tool.

13-3

13 HDL Code Generation Pane: Target

13-4

Altera Quartus II

Specify Altera Quartus II as the synthesis tool.
Microsemi Libero SoC

Specify Microsemi® Libero®SoC as the synthesis tool.

If your synthesis tool is not one of the Synthesis tool options, see “Synthesis Tool Path
Setup”.

Command-Line Information

Property: SynthesisTool

Type: character vector

Value: '' | 'Xilinx Vivado''Xilinx ISE''Altera Quartus II'
Default: '’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify Altera Quartus II asthe SynthesisTool when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'SynthesisTool', 'Altera Quartus II')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'SynthesisTool', 'Altera Quartus II')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Family

Specify the target device chip family for your model as a character vector. When you
specify the Synthesis Tool, HDL Coder populates the Family, Device, Package, and

Tool and Device

Speed with default values for that tool. To find the chip family for your target device, at
the MATLAB command line, enter hdlcoder.supportedDevices. Then, open the linked
report and find your target device details.

Settings
Default: '
Specify the target device chip family for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolChipFamily
Type: character vector

Value: A valid chip family for the target device
Default: '

For example, if your SynthesisTool is Xilinx Vivado, you can specify Virtex7 as
the SynthesisToolChipFamily when you generate HDL code for the symmetric fir
subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'SynthesisToolChipFamily', 'Virtex7')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'SynthesisToolChipFamily', 'Virtex7')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Device
Specify the target device name for your model as a character vector. When you specify

the Synthesis Tool, HDL Coder populates the Family, Device, Package, and Speed with
default values for that tool. To find the device name for your target device, at the MATLAB

13-5

13 HDL Code Generation Pane: Target

13-6

command line, enter hdlcoder. supportedDevices. Then, open the linked report and
find your target device details.

Settings
Default: '
Specify the target device name for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolDevicename

Type: character vector

Value: A valid device name for the synthesis tool
Default: '

You can get the SynthesisToolDeviceName when you specify the SynthesisTool for
your model. Consider that the SynthesisTool is set to Xilinx Vivado and the
SynthesisToolChipFamily is set to Virtex7.

* To get the default device name. pass the property as an argument to the
hdlget param function.

hdlget param('sfir fixed',
'SynthesisToolDeviceName')
* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'SynthesisToolDeviceName', 'xc7v2000t')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Package

Specify the target device package name for your model as a character vector. When you
specify the Synthesis Tool, HDL Coder populates the Family, Device, Package, and
Speed with default values for that tool. To find the device name for your target device, at

Tool and Device

the MATLAB command line, enter hdlcoder.supportedDevices. Then, open the linked
report and find your target device details.

Settings
Default: '
Specify the target device package name for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolPackageName

Type: character vector

Value: A valid package name for the synthesis tool
Default: '

You can get the SynthesisToolPackageName when you specify the SynthesisTool for
your model. Consider that the SynthesisTool is set to Xilinx Vivado and the
SynthesisToolChipFamily is set to Virtex7.

* To get the default device name. pass the property as an argument to the
hdlget param function.

hdlget param('sfir fixed',
'SynthesisToolPackageName')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'SynthesisToolPackageName', 'fhgl761')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* hdlsetuptoolpath
* “Tool Setup”

Speed
Specify the target device speed value for your model as a character vector. When you

specify the Synthesis Tool, HDL Coder populates the Family, Device, Package, and
Speed with default values for that tool. To find the chip family for your target device, at

13-7

13 HDL Code Generation Pane: Target

13-8

the MATLAB command line, enter hdlcoder.supportedDevices. Then, open the linked
report and find your target device details.

Settings
Default: '
Specify the target device speed value for your Simulink model as a character vector.

Command-Line Information

Property: SynthesisToolSpeedValue

Type: character vector

Value: A valid speed value for the target device
Default: '

You can get the SynthesisToolSpeedValue when you specify the SynthesisTool for
your model. Consider that the SynthesisTool is set to Xilinx Vivado and the
SynthesisToolChipFamily is set to Virtex7.

* To get the default device name. pass the property as an argument to the
hdlget param function.

hdlget param('sfir fixed', ...
'SynthesisToolSpeedValue')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'SynthesisToolSpeedValue', '-1"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl

* hdlsetuptoolpath
* “Tool Setup”

Target Frequency

Target Frequency

This parameter resides in the Objectives Settings section of the HDL Code Generation
> Target pane of the Configuration Parameters dialog box. By using this parameter, you
can specify the target frequency in MHz for multiple features and workflows. Before
setting the target frequency, make sure that you specify the Synthesis Tool.

Settings
Default: 0

This setting is the target frequency in MHz for multiple features and workflows that HDL
Coder supports. The supported features are:

» FPGA floating-point target library mapping: Specify the target frequency that you
want the IP to achieve when you use ALTERA MEGAFUNCTION (ALTERA FP
FUNCTIONS). If you do not specify the target frequency, HDL Coder sets the target
frequency to a default value of 200 MHz. See also “Generate HDL Code for FPGA
Floating-Point Target Libraries” on page 31-14.

* Adaptive pipelining: If your design uses multipliers, specify the synthesis tool and the
target frequency. Based on these settings, HDL Coder estimates the number of
pipelines that can be inserted to improve area and timing on the target platform. If
you do not specify the target frequency, HDL Coder uses a target frequency of @ MHz
and does not insert adaptive pipelines. See also “Adaptive Pipelining” on page 24-63.

You can also set the target frequency by using the Target Frequency (MHz) setting in
the Set Target Frequency task in the HDL Workflow Advisor.

Specify the target frequency for these workflows-

* Generic ASIC/FPGA: To specify the target frequency that you want your design to
achieve. HDL Coder generates a timing constraint file for that clock frequency. It adds
the constraint to the FPGA synthesis tool project that you create in the Create
Project task. If the target frequency is not achievable, the synthesis tool generates an
error. Target frequency is not supported with Microsemi Libero SoC.

 IP Core Generation: To specify the target frequency for HDL Coder to modify the
clock module setting in the reference design to produce the clock signal with that
frequency. Enter a target frequency value that is within the Frequency Range
(MHz). If you do not specify the target frequency, HDL Coder uses the Default
(MHz) target frequency.

13-9

13 HDL Code Generation Pane: Target

13-10

* Simulink Real-Time FPGA I/0: For Speedgoat I/O modules that are supported
with Xilinx ISE, specify the target frequency to generate the clock module to
produce the clock signal with that frequency.

The Speedgoat I/O modules that are supported with Xilinx Vivado use the IP

Core Generation workflow infrastructure. Specify the target frequency for HDL
Coder to modify the clock module setting in the reference design to produce the clock
signal with that frequency. Enter a target frequency value that is within the
Frequency Range (MHz). If you do not specify the target frequency, HDL Coder uses
the Default (MHz) target frequency.

* FPGA Turnkey: To generate the clock module to produce the clock signal with that
frequency automatically.

Command-Line Information
Property: TargetFrequency

Type: integer

Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify the TargetFrequency when you generate HDL code for
the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'TargetFrequency', '300")

» When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'TargetFrequency', '300')
makehdl('sfir fixed/symmetric_ fir')

See Also

* makehdl

Target Frequency

* “Set Target Frequency” on page 35-7
* “Customize Floating-Point IP Configuration” on page 31-23

13-11

HDL Code Generation Pane:
Optimization

* “Optimization Overview” on page 14-2

* “Balance delays” on page 14-3

* “RAM Mapping” on page 14-5

* “Transform non zero initial value delay” on page 14-8

* “Multiplier partitioning threshold” on page 14-10

» “Distributed Pipelining” on page 14-12

* “Clock Rate Pipelining” on page 14-15

* “Adaptive pipelining” on page 14-18

* “Preserve design delays” on page 14-20

* “Resource Sharing of Adders and Multipliers” on page 14-22
* “Resource Sharing of Multiply-Add and Other Blocks” on page 14-29
* “Share Floating-Point IPs” on page 14-35

* “Multicycle Path Constraints” on page 14-37

14 HDL Code Generation Pane: Optimization

Optimization Overview

The Optimization pane enables you to specify various optimizations such as delay
balancing, resource sharing and pipelining. To improve the area and timing of your design
on the target hardware, specify these settings. This pane also contains a Multicycle Path
Constraints section. Use the settings in this section to specify the timing requirements
that the Synthesis tool must meet for your design.

14-2

Balance delays

Balance delays

This parameter is in the HDL Code Generation > Target > General tab of the
Configuration Parameters dialog box.

When you enable certain optimizations such as pipelining or resource sharing, or specify
certain block implementations and generate code, HDL Coder introduces pipeline delays
along certain signal paths in your model. By default, the Balance delays setting is
enabled. The code generator detects these pipeline delays introduced along one path and
then inserts matching delays on other paths.

To make sure that the generated model after HDL code generation is functionally
equivalent to the original Simulink model, leave this setting enabled. If you disable this
setting, HDL Coder generates a warning that numerical differences can occur in the
validation model. To fix this warning, enable Balance delays on the model or run the
model check “Check delay balancing setting” on page 36-12.

Settings
Default: On

|7On

Enables delay balancing on your model. If HDL Coder detects introduction of new
delays along one path, matching delays are inserted on the other paths. When delay
balancing is enabled, the generated model is functionally equivalent to the original
model.

I off

The latency along signal paths might not be balanced, and the generated model might
not be functionally equivalent to the original model.

Command-Line Information
Property: BalanceDelays

Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

14-3

14 HDL Code Generation Pane: Optimization

14-4

For example, you can enable the BalanceDelays setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'BalanceDelays', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'BalanceDelays','on')
makehdl('sfir fixed/symmetric fir')
See Also

* makehdl
* “Delay Balancing” on page 24-30
* “BalanceDelays” on page 21-6

RAM Mapping

RAM Mapping

In this section...

“Map pipeline delays to RAM” on page 14-5
“RAM mapping threshold (bits)” on page 14-6

This section contains parameters in the HDL Code Generation > Target > General tab
of the Configuration Parameters dialog box. Using the parameters in this section, you can
reduce the area usage on the target device by trading-off block RAMs for registers. The
parameters specify whether you want to map pipeline registers in the generated code to
RAM, and the minimum RAM size for mapping to block RAMs on the FPGA.

Map pipeline delays to RAM

Map pipeline registers in the generated HDL code to RAM. Certain speed or area
optimizations such as pipelining and resource sharing, or certain block implementations
that you specify can insert pipeline registers in the generated HDL code. You can save
area on the target device by mapping these pipeline registers to RAM.

Settings
Default: Off

|7On

Map pipeline registers in the generated HDL code to RAM. To map these registers to
block RAMs, the RAM size must be greater than or equal to the RAM mapping
threshold in bits. RAM size is the product Delay length * Word length * Vector length *
Complex length.

I off
Do not map pipeline registers in the generated HDL code to RAM.

Command-Line Information
Property: MapPipelineDelaysToRAM
Type: character vector

Value: 'on' | 'off'

Default: 'off'

14-5

14 HDL Code Generation Pane: Optimization

14-6

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the MapPipelineDelaysToRAM setting when you generate
HDL code for the symmetric_ fir subsystem inside the sfir fixed model using either
of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MapPipelineDelaysToRAM', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MapPipelineDelaysToRAM', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “UseRAM” on page 21-29
* “RAM Mapping” on page 8-2

RAM mapping threshold (bits)

Specify the minimum RAM size in bits for mapping to block RAMs. The code generator
determines whether to use registers or RAM resources on the FPGA by comparing the
RAM size of your design with the RAM mapping threshold that you specify.

Settings
Default: 256

The RAM mapping threshold must be an integer greater than or equal to zero. HDL Coder
uses the threshold to determine whether or not to map the following elements to block
RAMs instead of to registers:

* Delay blocks

» Persistent arrays in MATLAB Function blocks

RAM Mapping

Command-Line Information
Property: RAMMappingThreshold
Type: integer

Value: integer greater than or equal to 0
Default: 256

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the RAMMappingThreshold to 1024 when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of
these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'RAMMappingThreshold', '1024"')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'RAMMappingThreshold', '1024"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “UseRAM” on page 21-29
* “RAM Mapping” on page 8-2

14-7

14 HDL Code Generation Pane: Optimization

Transform non zero initial value delay

14-8

This parameter is in the HDL Code Generation > Optimization > General tab of the
Configuration Parameters dialog box. Enable this option to optimize Delay blocks with
non zero initial condition.

Settings
Default: On

IFOn

Transform Delay blocks with nonzero Initial condition in your Simulink model to
Delay blocks with zero Initial condition and some additional logic in the generated
HDL code.

By using this transformation, HDL Coder can perform optimizations such as sharing,
distributed pipelining, and clock-rate pipelining more effectively, and prevent an
assertion from being triggered in the validation model.

I off

Do not transform Delay blocks with nonzero Initial condition in your Simulink
model.

Command-Line Information
Property: TransformNonZeroInitValDelay
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the TransformNonZeroInitValDelay property to on when
you generate HDL code for the symmetric fir subsystem inside the sfir fixed
model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'TransformNonZeroInitValDelay', 'on')

Transform non zero initial value delay

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'TransformNonZeroInitValDelay', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

makehdl

14-9

14 HDL Code Generation Pane: Optimization

Multiplier partitioning threshold

14-10

This parameter is in the HDL Code Generation > Optimization > General tab of the
Configuration Parameters dialog box. Use this parameter to specify the maximum input
bit width for multipliers in your design.

Settings
Default: Inf

N, where N is an integer greater than or equal to 2
Partition multipliers so that N is the maximum multiplier input bit width.

This parameter specifies the maximum input bit width for a multiplier. If at least one
of the inputs to the multiplier has a bit width greater than the threshold value, the
code generator splits the multiplier into smaller multipliers.

To improve hardware mapping results, set the multiplier partitioning threshold to the
input bit width of the DSP or multiplier hardware on your target device.

Inf
Do not partition multipliers.

Command-Line Information

Property: MultiplierPartitioningThreshold
Type: integer

Value: integer greater than or equal to 0

Default: Inf

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can set the MultiplierPartitioningThreshold to 16 when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MultiplierPartitioningThreshold', '16")

Multiplier partitioning threshold

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MultiplierPartitioningThreshold','16"')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Multiplier promotion threshold” on page 14-27

14-11

14 HDL Code Generation Pane: Optimization

Distributed Pipelining

This section contains parameters in the HDL Code Generation > Optimization >
Pipelining tab of the Configuration Parameters dialog box. Using the parameters in this
section, you can improve the timing of your design on the target device. Enable the
hierarchical distributed pipelining optimization, and specify whether to prioritize the
distributed pipelining algorithm for numerical integrity or performance.

Hierarchical distributed pipelining

Hierarchical distributed pipelining extends the scope of distributed pipelining by
distributing delays across subsystem hierarchies. This optimization moves the delays
within a Subsystem while preserving the hierarchy.

Settings
Default: Off

|7On

Enable retiming across a subsystem hierarchy. HDL Coder applies retiming
hierarchically from the top-level Subsystem. To move delays inside a Subsystem, in
the HDL Block Properties for that Subsystem, set DistributedPipelining to on.
Hierarchical distributed pipelining stops distributing delays when it reaches a
Subsystem that has DistributedPipelining set to off.

I off

Distributes pipelines within a Subsystem, if you have DistributedPipelining set to
on for that Subsystem.

Dependency

If you select the Preserve design delays check box, distributed pipelining does not move
the design delays.

Command-Line Information

Property: HierarchicalDistPipelining
Type: character vector

Value: 'on' | 'off'

Default: 'off'

14-12

Distributed Pipelining

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the HierarchicalDistPipelining setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_fir',
'HierarchicalDistPipelining', 'on")

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'HierarchicalDistPipelining','on")
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl

» “Distributed Pipelining” on page 24-44

» “DistributedPipelining” on page 21-10

Distributed pipelining priority

Specify the priority for your distributed pipelining algorithm.
Settings

Default: Numerical Integrity

Numerical Integrity
Prioritize numerical integrity when distributing pipeline registers.
This option uses a conservative retiming algorithm that does not move registers
across a component if the functional equivalence to the original design is unknown.
Performance
Prioritize performance over numerical integrity.

Use this option if your design requires a higher clock frequency and the Simulink
behavior does not need to strictly match the generated code behavior. This option

14-13

14 HDL Code Generation Pane: Optimization

14-14

uses a more aggressive retiming algorithm that moves registers across a component
even if the modified design’s functional equivalence to the original design is unknown.

Command-Line Information

Property: DistributedPipeliningPriority
Type: character vector

Value: 'NumericalIntegrity' | 'Performance'’
Default: 'Numericallntegrity'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the DistributedPipeliningPriority setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'DistributedPipeliningPriority', 'Performance’)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'DistributedPipeliningPriority"', 'Performance")
makehdl('sfir_ fixed/symmetric fir"')

See Also

* makehdl
» “Distributed Pipelining” on page 24-44
» “DistributedPipelining” on page 21-10

Clock Rate Pipelining

Clock Rate Pipelining

This section contains parameters in the HDL Code Generation > Optimization >
Pipelining tab of the Configuration Parameters dialog box. Using the parameters in this
section, you can improve the timing of your design on the target device. Enable clock-rate
pipelining and allow clock-rate pipelining at the DUT output ports to run the pipeline
registers at a faster clock rate on the target FPGA device.

Clock-rate pipelining

If your design contains multicycle paths, use clock-rate pipelining to insert pipeline
registers at a clock rate that is faster than the data rate. This optimization improves the
clock frequency and reduces the area usage without introducing additional latency. Clock-
rate pipelining does not affect existing design delays in your model. It is an alternative to
using multicycle path constraints with your synthesis tool.

Settings
Default: On

|7On

Insert pipeline registers at the clock rate for multi-cycle paths.

I off

Insert pipeline registers at the data rate for multi-cycle paths.
Dependency

If you specify an Oversampling factor greater than one, make sure that you select the
Clock-rate pipelining check box. Clock-rate pipelining identifies regions in your model
that run at the same slow data rate and are delimited by Delay blocks or blocks that
introduce a rate transition. The code generator converts these regions to the faster clock
rate by introducing Repeat blocks at the input of the region and Rate Transition blocks at
the output of the region.

Command-Line Information
Property: ClockRatePipelining
Type: character vector

Value: 'on' | 'off'

14-15

14 HDL Code Generation Pane: Optimization

14-16

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ClockRatePipelining setting when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of
these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ClockRatePipelining','on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'ClockRatePipelining','on')
makehdl('sfir_ fixed/symmetric_ fir')

See Also

* “Oversampling factor” on page 16-18
* “ClockRatePipelining” on page 21-7
* “Clock-Rate Pipelining” on page 24-58

Allow clock-rate pipelining of DUT output ports

For DUT output ports, insert pipeline registers at the clock rate instead of the data rate.
Settings

Default: Off

¥ on
At DUT output ports, insert pipeline registers at clock rate.

I off

At DUT output ports, insert pipeline registers at data rate.

Clock Rate Pipelining

Dependency

When you specify this parameter, make sure that you select the Clock-rate pipelining
check box.

Command-Line Information

Property: ClockRatePipelineQutputPorts
Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ClockRatePipelineQutputPorts setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ClockRatePipelineQutputPorts', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'ClockRatePipelineQutputPorts', 'on')
makehdl('sfir_fixed/symmetric_fir')

See Also

* “ClockRatePipelining” on page 21-7
» “Clock-Rate Pipelining” on page 24-58
* “Oversampling factor” on page 16-18

14-17

14 HDL Code Generation Pane: Optimization

Adaptive pipelining

14-18

This parameter resides in the HDL Code Generation > Optimization > Pipelining tab
of the Configuration Parameters dialog box. Use this parameter to insert pipeline
registers to the blocks in your design, reduce the area usage, and maximize the
achievable clock frequency on the target FPGA device.

Settings
Default: On

¥ On
Insert adaptive pipeline registers in your design. For HDL Coder to insert adaptive
pipelines, you must specify the synthesis tool.

I off
Do not insert adaptive pipeline registers.

Dependency

When you specify this parameter, in the HDL Code Generation > Targetpane:

* Specify the Synthesis Tool. If your design has multipliers, specify the Synthesis Tool
and the Target Frequency (MHz) for adaptive pipeline insertion.

* In the General tab, make sure that the Clock-rate pipelining check box is selected
to insert pipeline registers at the faster clock rate.

* Inthe General tab, make sure that the Balance delays check box is selected.

* Inthe Resource Sharing tab, enable Adders, and specify the SharingFactor on the
DUT Subystem to share resources and insert adaptive pipelines, which saves area and
improves timing.

you s

Command-Line Information
Property: AdaptivePipelining
Type: character vector

Value: 'on' | 'off'

Adaptive pipelining

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ClockRatePipelineQutputPorts setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'ClockRatePipelineQutputPorts','on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'ClockRatePipelineQutputPorts','on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Adaptive pipelining” on page 14-18
* “AdaptivePipelining” on page 21-5

14-19

14 HDL Code Generation Pane: Optimization

Preserve design delays

14-20

This parameter resides in the HDL Code Generation > Optimization > Pipelining tab
of the Configuration Parameters dialog box. Enable this parameter to prevent distributed
pipelining from moving design delays.

Settings
Default: Off

¥ on
Prevent distributed pipelining from moving design delays.

I off

Do not prevent distributed pipelining from moving design delays.

Command-Line Information
Property: PreserveDesignDelays
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the PreserveDesignDelays setting when you generate HDL
code for the symmetric fir subsystem inside the sfir fixed model using either of
these methods.

» Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric_ fir',
'PreserveDesignDelays', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'PreserveDesignDelays','on')
makehdl('sfir fixed/symmetric fir')

Preserve design delays

See Also

» “Distributed Pipelining” on page 24-44
» “DistributedPipelining” on page 21-10

14-21

14 HDL Code Generation Pane: Optimization

Resource Sharing of Adders and Multipliers

14-22

This section contains parameters in the HDL Code Generation > Optimization >
Resource sharing tab of the Configuration Parameters dialog box. Enable these
parameters to save resources on the target device by specifying whether to share adders
and multipliers in your design, and the minimum sharing bitwidth.

Share Adders

Enable this parameter to share adders with the resource sharing optimization. Resource
sharing identifies Add or Sum blocks in your design that have two inputs and replaces
them with a single Add or Sum block. This optimization saves area on the target FPGA
device.

Settings
Default: Off

|7On

When resource sharing is enabled, this optimization shares adders with a bit width
greater than or equal to the Adder sharing minimum bitwidth.

I off
Do not share adders.

Dependency

» To share adders in your design, in the HDL Block Properties for the DUT Subsystem,
specify the SharingFactor.

* When you specify the Adder sharing minimum bitwidth, the code generator shares
adders that have a bit width greater than or equal to the minimum bit width. The
default minimum bit width for sharing adders is zero.

Command-Line Information
Property: ShareAdders
Type: character vector
Value: 'on' | 'off'
Default: 'off'

Resource Sharing of Adders and Multipliers

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ShareAdders setting when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ShareAdders', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'ShareAdders','on')
makehdl('sfir_fixed/symmetric_fir')

See Also

* “SharingFactor” on page 21-25
* “Resource Sharing” on page 24-23
* “Resource Sharing of Multiply-Add and Other Blocks” on page 14-29

Adder sharing minimum bitwidth

Use this parameter to specify the minimum bit width that is required to share adders with
the resource sharing optimization.

Settings
Default: 0

01
No minimum bit width for shared adders.
N, where N is an integer greater than 1

When resource sharing and adder sharing are enabled, share adders with a bit width
greater than or equal to N.

Dependency

To share adders in your design:

14-23

14 HDL Code Generation Pane: Optimization

14-24

* Inthe Resource Sharing tab, enable the Adders setting.
* Inthe HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information

Property: AdderSharingMinimumBitwidth
Type: integer

Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the AdderSharingMinimumBitwidth setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'AdderSharingMinimumBitwidth',16)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'AdderSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')

See Also

* “SharingFactor” on page 21-25
» “Resource Sharing” on page 24-23

Share Multipliers

Enable this parameter to share multipliers with the resource sharing optimization.
Resource sharing identifies Product or Gain blocks in your design that have two inputs
and replaces them with a single Product or Gain block. This optimization saves area on
the target FPGA device.Share multipliers with the resource sharing optimization.

Settings

Default: On

Resource Sharing of Adders and Multipliers

|7On

When resource sharing is enabled, share multipliers with a bit width greater than or
equal to the Multiplier sharing minimum bitwidth. For successfully sharing
multipliers, the input fixed-point data types must have the same wordlength. The
fraction lengths and signs of the fixed-point data types can be different.

I off
Do not share multipliers.

Dependency

» To share multipliers in your design, in the HDL Block Properties for the DUT
Subsystem, specify the SharingFactor.

* When you specify the Multiplier sharing minimum bitwidth, the code generator
shares multipliers that have a bit width greater than or equal to the minimum bit
width. The default minimum bit width for sharing multipliers is zero.

Command-Line Information
Property: ShareMultipliers
Type: character vector

Value: 'on' | 'off'

Default: 'on’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ShareMultipliers setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'ShareMultipliers','on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'ShareMultipliers','on')
makehdl('sfir fixed/symmetric fir')

14-25

14 HDL Code Generation Pane: Optimization

See Also

* “SharingFactor” on page 21-25
* “Resource Sharing” on page 24-23
* “Resource Sharing of Multiply-Add and Other Blocks” on page 14-29

Multiplier sharing minimum bitwidth

Use this parameter to specify the minimum bit width that is required to share multipliers
with the resource sharing optimization.

Settings
Default: 0

01
No minimum bit width for shared multipliers.
N, where N is an integer greater than 1

When resource sharing and multiplier sharing are enabled, share multipliers with a
bit width greater than or equal to N.

Dependency
To share multipliers in your design:

* In the Resource Sharing tab, make sure that the Multipliers check box is selected.
* In the HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information

Property: MultiplierSharingMinimumBitwidth
Type: integer

Value: integer greater than or equal to 0

Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the MultiplierSharingMinimumBitwidth setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

14-26

Resource Sharing of Adders and Multipliers

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MultiplierSharingMinimumBitwidth',16)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'MultiplierSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')

See Also

* “SharingFactor” on page 21-25
* “Resource Sharing” on page 24-23

Multiplier promotion threshold

To share smaller multipliers with other larger multipliers by using the resource sharing
optimization, specify the multiplier promotion threshold. This threshold specifies the
maximum word-length by which HDL Coder promotes a multiplier for sharing with other
multipliers.

Settings
Default: 0

0

No difference in word-length between the multipliers. In other words, HDL Coder
shares multipliers that have the same word-lengths.

N, where N is an integer greater than 0

Maximum word-length by which HDL Coder promotes a multiplier for sharing with
other multipliers. HDL Coder promotes and shares multipliers with different word-
lengths, if the difference in word-lengths is less than or equal to N.

Dependency

To share multipliers in your design:

* In the Resource Sharing tab, make sure that the Multipliers check box is selected.
* Inthe HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

14-27

14 HDL Code Generation Pane: Optimization

14-28

Command-Line Information

Property: MultiplierPromotionThreshold
Type: integer

Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the MultiplierPromotionThreshold setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'MultiplierPromotionThreshold',8)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MultiplierPromotionThreshold',8)
makehdl('sfir fixed/symmetric fir')

See Also

* “SharingFactor” on page 21-25
» “Resource Sharing” on page 24-23

Resource Sharing of Multiply-Add and Other Blocks

Resource Sharing of Multiply-Add and Other Blocks

This section contains parameters in the HDL Code Generation > Optimization >
Resource sharing tab of the Configuration Parameters dialog box. Enable these
parameters to save resources on the target device by specifying whether to share
Multiply-Add blocks, atomic subsystems, and MATLAB Function blocks in your design.

Share Multiply-Add blocks

Share Multiply-Add blocks with the resource sharing optimization.
Settings
Default: On

|7On

When resource sharing is enabled, share Multiply-Add blocks with a bit width greater
than or equal to Multiply-Add block sharing minimum bitwidth.

I off
Do not share Multiply-Add blocks.

Dependency

* To share Multiply-Add blocks in your design, in the HDL Block Properties for the DUT
Subsystem, specify the SharingFactor.

* When you specify the Multiply-Add block sharing minimum bitwidth, the code
generator shares Multiply-Add blocks that have a bit width greater than or equal to
the minimum bit width. The default minimum bit width for sharing Multiply-Add blocks
is zero.

Command-Line Information
Property: ShareMultiplyAdds
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

14-29

14 HDL Code Generation Pane: Optimization

14-30

For example, you can use the ShareMultiplyAdds setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'ShareMultiplyAdds', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'ShareMultiplyAdds', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Resource Sharing of Adders and Multipliers” on page 14-22
* “Resource Sharing” on page 24-23
* “Resource Sharing of Adders and Multipliers” on page 14-22

Multiply-Add block sharing minimum bitwidth

Use this parameter to specify the minimum bit width that is required to share Multiply-
Add with the resource sharing optimization.

Settings
Default: 0

01
No minimum bit width for shared Multiply-Add blocks.

N, where N is an integer greater than 1
When resource sharing and Multiply-Add block sharing are enabled, share Multiply-
Add blocks with a bit width greater than or equal to N.

Dependency

To share Multiply-Add blocks in your design:

* Inthe Resource Sharing tab, make sure that the Multiply-Add blocks check box is
selected.

Resource Sharing of Multiply-Add and Other Blocks

* Inthe HDL Block Properties for the DUT Subsystem, specify the SharingFactor.

Command-Line Information

Property: MultiplierAddSharingMinimumBitwidth
Type: integer

Value: integer greater than or equal to 0

Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the MultiplierAddSharingMinimumBitwidth setting when
you generate HDL code for the symmetric fir subsystem inside the sfir fixed
model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ..
'MultiplierAddSharingMinimumBitwidth',16)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed',MultiplierAddSharingMinimumBitwidth',16)
makehdl('sfir_fixed/symmetric_fir')

See Also

* “Resource Sharing of Adders and Multipliers” on page 14-22
* “Resource Sharing” on page 24-23

Share Atomic subsystems

Share atomic subsystems with the resource sharing optimization.
Settings

Default: On

|7On

When resource sharing is enabled, share atomic subsystems.

14-31

14 HDL Code Generation Pane: Optimization

14-32

I off
Do not share atomic subsystems.

Dependency

To share Atomic Subsystem blocks in your design, in the HDL Block Properties for the
parent DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: ShareAtomicSubsystems
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ShareMultiplyAdds setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ShareAtomicSubsystems', ‘on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'ShareAtomicSubsystems','on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Resource Sharing of Adders and Multipliers” on page 14-22
* “Resource Sharing” on page 24-23
» “Resource Sharing of Adders and Multipliers” on page 14-22

Share MATLAB Function blocks

Share MATLAB Function blocks with the resource sharing optimization.

Resource Sharing of Multiply-Add and Other Blocks

Settings
Default: On

|7On

When resource sharing is enabled, share MATLAB Function blocks.

I off
Do not share MATLAB Function blocks.

Dependency

To share MATLAB Function blocks in your design, in the HDL Block Properties for the
parent DUT Subsystem, specify the SharingFactor.

Command-Line Information
Property: ShareMATLABBlocks
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ShareMATLABBlocks setting when you generate HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ShareMATLABBlocks', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir_ fixed', 'ShareMATLABBlocks', 'on')
makehdl('sfir_ fixed/symmetric_ fir')

See Also

* “Resource Sharing of Adders and Multipliers” on page 14-22

14-33

14 HDL Code Generation Pane: Optimization

* “Resource Sharing” on page 24-23
* “Resource Sharing of Adders and Multipliers” on page 14-22

14-34

Share Floating-Point IPs

Share Floating-Point IPs

This parameter resides in the HDL Code Generation > Optimization > Resource
Sharing tab of the Configuration Parameters dialog box. Use this parameter to share
floating-point IP blocks in the target hardware with the resource sharing optimization.

Settings
Default: On

V' On
When you enable resource sharing, HDL Coder shares floating-point IP blocks.

I off
Do not share floating-point IP blocks.

Dependency

To share floating-point IPs:

* In the HDL Block Properties for the parent DUT Subsystem, specify the
SharingFactor. The number of floating-point IP blocks that get shared depends on the
SharingFactor that you specify for the subsystem.

* In the HDL Code Generation > Global Settings > Floating Point Target tab, set
the Floating Point IP Library to a value other than None.

Command-Line Information
Property: ShareFloatingPointIP
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can use the ShareFloatingPointIP setting when you generate HDL

code for the symmetric fir subsystem inside the sfir fixed model using either of
these methods.

14-35

14 HDL Code Generation Pane: Optimization

» Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric_ fir',
'ShareFloatingPointIP', 'on"')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'ShareFloatingPointIP','on"')
makehdl('sfir fixed/symmetric fir')

See Also

* “Resource Sharing of Adders and Multipliers” on page 14-22

* “Resource Sharing” on page 24-23

* “Resource Sharing of Adders and Multipliers” on page 14-22

* “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

14-36

Multicycle Path Constraints

Multicycle Path Constraints

In this section...

“Enable based constraints” on page 14-37

“Register-to-register path info” on page 14-38

This section contains parameters in the Multicycle Path Constraints section of the
HDL Code Generation > Optimization pane of the Configuration Parameters dialog
box.

Synthesis tools require that data propagates from a source register to a destination
register within one clock cycle. However, multicycle paths cannot complete their
execution within one clock cycle and therefore cannot meet the timing requirements. To
meet the timing requirement of multicycle paths, use the parameters in this section to
generate a register-to-register path information file or to generate enable-based
constraints that uses the timing controller enable signals.

Enable based constraints

To meet the timing requirement of multicycle paths in your Simulink design in single
clock mode, use enable-based constraints. Enable-based constraints relax the timing
requirement by allowing multiple clock cycles for data to propagate between the
registers. The constraints use the timing controller enable signals to create enable-based
register groups, with registers in each group driven by the same clock enable.

Settings
Default: Off

|7On

When you enable this setting and generate HDL code,HDL Coder generates a
constraints file with the naming convention dutname_constraints. The format of
the file name depends on the synthesis tool that you specify. The constraints file
defines the timing requirements of multicycle paths and contains information about
the clock multiples for calculating the setup and hold time information.

I off
Do not generate a multicycle path constraints file.

14-37

14 HDL Code Generation Pane: Optimization

Dependency

If you select the Enable based constraints check box, make sure that you clear the
Clock-rate pipelining check box. Using enable-based multicycle path constraints is an
alternative to the clock-rate pipelining optimization. You can clear the Clock-rate
pipelining check box in the HDL Code Generation > Target > Pipelining tab.

Command-Line Information

Parameter: MulticyclePathConstraints
Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the MulticyclePathConstraints setting when you
generate HDL code for the symmetric fir subsystem inside the sfir fixed model
using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MulticyclePathConstraints', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MulticyclePathConstraints','on')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl

» “Meet Timing Requirements Using Enable-Based Multicycle Path Constraints” on page
38-44

* “Use Multicycle Path Constraints to Meet Timing for Slow Paths”

Register-to-register path info

Generate a text file that reports multicycle path constraint information. The text file
describes one or more multicycle path constraints that is agnostic to the synthesis tool.

14-38

Multicycle Path Constraints

You must convert this information to the format required by the synthesis tool. It is
recommended that you use the enable-based constraints setting instead to meet the
timing requirements of multicycle paths. When you use that setting, the generated
constraints are more robust to name changes in synthesis tools, and are supported with
Xilinx Vivado, Xilinx ISE, and Altera Quartus II.

Settings
Default: Off

|7On

Generate a text file that reports multicycle path constraint information, for use with
synthesis tools.

The file name for the multicycle path information file derives from the name of the
DUT and the postfix ' constraints', as follows:

DUTname constraints.txt

For example, if the DUT name is symmetric fir, the name of the multicycle path
information file is symmetric_fir constraints.txt.

I off
Do not generate a multicycle path information file.

Command-Line Information
Parameter: MulticyclePathInfo
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can enable the MulticyclePathInfo setting when you generate HDL
code for the symmetric_ fir subsystem inside the sfir fixed model using either of
these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'MulticyclePathInfo', 'on')

14-39

14 HDL Code Generation Pane: Optimization

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MulticyclePathInfo', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Generate Multicycle Path Information Files” on page 22-17

14-40

HDL Code Generation Pane: Floating
Point

* “Floating Point Overview” on page 15-2
* “Floating Point IP Library” on page 15-3
* “Native Floating Point” on page 15-5
“FPGA Floating-Point Libraries” on page 15-10

15 HDL code Generation Pane: Floating Point

Floating Point Overview

The Floating Point pane enables you to specify the floating point IP library. You can
specify whether to generate code the native floating point support in HDL Coder or by
instantiating the third-party Intel® or Xilinx floating-point libraries.

15-2

Floating Point IP Library

Floating Point IP Library

This parameter resides in the HDL Code Generation > Floating Point pane of the
Configuration Parameters dialog box. Use this parameter to specify the floating-point
target library.

Settings
Default: NONE

The options are:

None

Select this option if you do not want the design to map to floating-point target
libraries.

Native Floating Point

Specify native floating-point as the library. You can specify the latency strategy and
whether to handle denormal numbers in your design.

Altera Megafunctions (ALTERA FP FUNCTIONS)

Specify Altera Megafunctions (ALTERA FP FUNCTIONS) as the floating-point target
library. You can provide the IP Target frequency.

Altera Megafunctions (ALTFP)

Specify Altera Megafunctions (ALTFP) as the floating-point target library. You can
provide the objective and latency strategy for the IP.

Xilinx LogiCORE

Specify Xilinx LogiCORE® as the floating-point target library. You can provide the
objective and latency strategy for the IP.

Command-Line Information

To set the floating-point library:

1 Create a floating-point target configuration object for the floating-point library. This
example shows how to create an hdlcoder.FloatingPointTargetConfig object
for the Native Floating Point library:

fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

15-3

15 HDL code Generation Pane: Floating Point

2 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric fir subsystem:

hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_fir')

See Also

* hdlcoder.createFloatingPointTargetConfig
* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94
* “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-14

15-4

Native Floating Point

Native Floating Point

This section contains parameters in the HDL Code Generation > Floating Point pane
of the Configuration Parameters dialog box. Use these parameters to specify the latency
strategy, whether to handle denormal numbers in your design, and how to perform
mantissa multiplication. To specify these settings, Floating Point IP Library must be set
to Native Floating Point.

Latency Strategy

Specify whether you want the design to map to minimum or maximum latency with native
floating-point libraries.

Settings
Default: MAX

The options are:

MIN

Maps to minimum latency for the native floating-point libraries.
MAX

Maps to maximum latency for the native floating-point libraries.
ZERO

Does not use any latency for the native floating-point libraries.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating
Point.

Command-Line Information

To specify the latency strategy:

1 Create a floating-point target configuration object for Native Floating Point as
the floating-point library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

15-5

15 HDL Code Generation Pane: Floating Point

15-6

2 Specify the LatencyStrategy property of the LibrarySettings attribute of the
floating-point target configuration object.

fpconfig.LibrarySettings.LatencyStrategy = 'MIN';

3 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric_ fir subsystem:

hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_fir')

See also

* “LatencyStrategy” on page 21-39

* hdlcoder.createFloatingPointTargetConfig

* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94
* “Latency Considerations with Native Floating Point” on page 10-85

Handle Denormals

Specify whether you want to handle denormal numbers in your design. Denormal
numbers are nonzero numbers that are smaller than the smallest normal number.

Settings
Default: Off
¥ On
Inserts additional logic to handle the denormal numbers in your design.

I off

Does not add additional logic to handle the denormal numbers in your design. If the
input is a denormal value, HDL Coder treats the value as zero before performing any
computations.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating
Point.

Native Floating Point

Command-Line Information

To specify the latency strategy:

1 Create a floating-point target configuration object for Native Floating Point as
the floating-point library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

2 Specify the HandleDenormals property of the LibrarySettings attribute of the
floating-point target configuration object.

fpconfig.LibrarySettings.HandleDenormals = 'on';

3 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric fir subsystem:

hdlset param('sfir single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric fir')

See also

* “HandleDenormals” on page 21-37

* hdlcoder.createFloatingPointTargetConfig

* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94
* “Numeric Considerations with Native Floating-Point” on page 10-71

Mantissa Multiplier Strategy

Specify how you want HDL Coder to implement the mantissa multiplication operation
when you have Product blocks in your design.

Settings
Default: Auto
The options are:

Auto

This default option automatically determines how to implement the mantissa
multiplication depending on the Synthesis tool that you specify.

15-7

15 HDL Code Generation Pane: Floating Point

15-8

» Ifyou do not specify a Synthesis tool, this setting selects the Full Multiplier
implementation by default.

» Ifyou specify Altera Quartus II asthe Synthesis tool, this setting selects the
Full Multiplier implementation.

» Ifyou specify Xilinx Vivado or Xilinx ISE as the Synthesis tool, this setting
selects the Part Multiplier Part AddShift implementation.

Full Multiplier

Specify this option to use only multipliers for implementing the mantissa
multiplication. The multipliers can utilize DSP units on the target device.

Part Multiplier Part AddShift

No

Specify this option to split the implementation into two parts. One part is
implemented with multipliers. The other part is implemented with a combination of
adders and shifters. The multipliers can utilize the DSP units on the target device.
The combination of adders and shifters does not utilize the DSP.

Multiplier Full AddShift

Select this option to use a combination of adders and multipliers to implement the
mantissa multiplication. This option does not utilize DSP units on the target device.
You can also use this option if your target device does not contain DSP units.

Dependency

To specify this parameter, set the Floating Point IP Library to Native Floating
Point.

Command-Line Information

To specify the latency strategy:

1

Create a floating-point target configuration object for Native Floating Point as
the floating-point library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint');

Specify the MantissaMultiplyStrategy property of the LibrarySettings
attribute of the floating-point target configuration object.
fpconfig.LibrarySettings.MantissaMultiplyStrategy = 'PartMultiplierPartAddShift';

Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric fir subsystem:

Native Floating Point

hdlset param('sfir single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric fir')

See also

* “MantissaMultiplyStrategy” on page 21-42
* hdlcoder.createFloatingPointTargetConfig
* “Generate Target-Independent HDL Code with Native Floating-Point” on page 10-94

15-9

15 HDL code Generation Pane: Floating Point

FPGA Floating-Point Libraries

15-10

This section contains parameters in the HDL Code Generation > Floating Point pane
of the Configuration Parameters dialog box. Use these parameters to specify the latency
strategy, objective, and whether to initialize the pipeline registers in the floating-point
target IP to zero.

Initialize IP Pipelines To Zero

Inserts additional logic during HDL code generation to initialize the values of pipeline
registers in the Altera floating-point target IP to zero. If you do not select this check box,
HDL Coder reports a warning during HDL code generation.

Settings
Default: On

IFOn

Inserts additional logic to initialize pipeline registers in the floating-point target IP to
Zero.

I off

Does not add additional logic to initialize pipeline registers in the floating-point target
IP to zero.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera
Megafunctions (ALTERA FP FUNCTIONS). Before you set the floating-point library,
specify the path to your synthesis tool by using the hdlsetuptoolpath function.

Command-Line Information
To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions
(ALTERA FP FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('AlteraFPFunctions');

2 Specify the InitializeIPPipelinesToZero property of the LibrarySettings
attribute of the floating-point target configuration object.

FPGA Floating-Point Libraries

fpconfig.LibrarySettings.InitializeIPPipelinesToZero = 0;

3 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric_ fir subsystem:

hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_ fir')

See Also

* hdlcoder.createFloatingPointTargetConfig

» “Target Frequency” on page 13-9

* “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-14
Latency Strategy

Specify whether you want the design to map to minimum or maximum latency with Xilinx
LogiCORE or ALTFP Altera megafunction IPs.

Settings
Default: MIN

The options are:

MIN

Maps to minimum latency for the specified floating-point target IP.
MAX

Maps to maximum latency for the specified floating-point target IP.

Dependency

To specify this parameter, set the Floating Point IP Library to Altera
Megafunctions (ALTFP) or Xilinx LogiCORE. Before you set the floating-point
library, specify the path to your synthesis tool by using the hdlsetuptoolpath function.

Command-Line Information

To specify this setting:

15-11

15 HDL code Generation Pane: Floating Point

15-12

1 Create a floating-point target configuration object with Altera Megafunctions
(ALTERA FP FUNCTIONS) as the floating-point target library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 Specify the LatencyStrategy property of the LibrarySettings attribute of the
floating-point target configuration object.

fpconfig.LibrarySettings.LatencyStrategy = 'MAX';

3 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric_ fir subsystem:

hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_ fir')

See also

* hdlcoder.createFloatingPointTargetConfig
* “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-14
* “Customize Floating-Point IP Configuration” on page 31-23

Objective

Specify whether you want to optimize the design for speed or area when mapping to
floating-point target libraries.

Settings
Default: SPEED

The options are:

NONE

Select this option if you do not want to optimize the design for speed or area.
SPEED

Select this option to optimize the design for speed.
AREA

Select this option to optimize the design for area.

FPGA Floating-Point Libraries

Dependency

To specify this parameter, set the Floating Point IP Library to Altera
Megafunctions (ALTFP) or Xilinx LogiCORE. Before you set the floating-point
library, specify the path to your synthesis tool by using the hdlsetuptoolpath function.

Command-Line Information
To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions
(ALTERA FP FUNCTIONS) as the floating-point target library.

fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 Specify the Objective property of the LibrarySettings attribute of the floating-
point target configuration object.
fpconfig.LibrarySettings.0Objective = 'AREA';

3 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric fir subsystem:

hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_ fir')

See also

* hdlcoder.createFloatingPointTargetConfig
* “Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-14
* “Customize Floating-Point IP Configuration” on page 31-23

IP Settings

The IP Settings section has an IP configuration table with the IP names and data types
and additional options to specify a custom latency and any extra arguments.

The options in the IP configuration table depend on the library that you specify.

» If you specify the ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS) library, HDL
Coder infers the latency value from the Target Frequency (MHz) value.

» If you specify the ALTERA MEGAFUNCTION (ALTFP) or XILINX LOGICORE libraries,
HDL Coder infers the IP latency from the Latency Strategy setting. The IP

15-13

15 HDL code Generation Pane: Floating Point

15-14

configuration table has two additional columns, MinLatency and MaxLatency, that
contain the minimum and maximum latency values for each IP in the table.

The IP configuration table has these sections:
* Name: Contains a list of IP names that HDL Coder map the Simulink blocks to, such

as ABS, ADDSUB, and CONVERT.

* DataType: Contains a list of IP data types for each IP in the table. These are mostly
SINGLE and DOUBLE data types. The CONVERT IP blocks can have
DOUBLE_TO NUMERICTYPE, NUMERICTYPE TO DOUBLE data types, and so on.

* Latency: The default latency value of —1 means that the IP inherits the latency value
from the target frequency or the latency strategy setting depending on the library that
you choose. To customize the latency of the IP that your Simulink blocks map to, enter
your own custom value for the latency.

* ExtraArgs: Specify any additional settings that is specific to the IP.

For example, if you have an Add block with Single data types in your Simulink model,
HDL Coder maps the block to the ADDSUB IP. If you want to specify a custom latency
value, say 8, for the IP, enter the value in the Latency column for the IP.

IP Settings

Customize data type conversion IF for: NGLE_TO_NUMERICTYPE(1, 32, 16) Insert

Mame DataType MinLatency MaxLatency Latency ExtraArgs
ADDSUEB DOUELE 12 12 -1
ADDSUE SINGLE 12 12 8 CSET c_mult_usage=...
CONVERT DOUBLE_TO _N.. & 6
CONVERT MNUMERICTYPE_ ... & 6

cmultusage is a parameter that you can specify with the Xilinx LogiCORE libraries.
Dependency
To specify this parameter, set the Floating Point IP Library to Altera

Megafunctions (ALTFP) or Xilinx LogiCORE. Before you set the floating-point
library, specify the path to your synthesis tool by using the hdlsetuptoolpath function.

FPGA Floating-Point Libraries

Command-Line Information

To specify this setting:

1 Create a floating-point target configuration object with Altera Megafunctions
(ALTERA FP FUNCTIONS) as the floating-point target library.
fpconfig = hdlcoder.createFloatingPointTargetConfig('ALTFP');

2 To view the floating-point IP configuration, use the IPConfig object.
fpconfig.IPConfig

3 To customize the latency or specify additional arguments, use the customize
method.
fpconfig.IPConfig.customize('ADDSUB', 'Single', 'Latency',6);

4 Set the floating-point target configuration on the model and then generate HDL code.
This example shows how to set the configuration on the sfir single model and
generate HDL code for the symmetric_ fir subsystem:
hdlset param('sfir _single', 'FloatingPointTargetConfig', fpconfig)
makehdl('sfir single/symmetric_ fir')

See also

hdlcoder.createFloatingPointTargetConfig

customize

“Generate HDL Code for FPGA Floating-Point Target Libraries” on page 31-14
“Customize Floating-Point IP Configuration” on page 31-23

15-15

HDL Code Generation Pane: Global
Settings

* “Global Settings Overview” on page 16-3

* “Clock Settings and Timing Controller Postfix” on page 16-4

* “Reset Settings” on page 16-10

* “Clock Enable Settings” on page 16-15

* “Oversampling factor” on page 16-18

* “Comment in header” on page 16-20

* “Language-Specific Identifiers and File Extensions” on page 16-22
* “Split VHDL entity and architecture” on page 16-28

* “Complex Signals Postfix” on page 16-31

* “VHDL Architecture and Library Name” on page 16-32

* “Pipeline postfix” on page 16-33

* “Generate VHDL code for model references into a single library” on page 16-35
* “Generate Statement Labels” on page 16-36

* “Vector and Component Instances Labels” on page 16-38

» “Map file postfix” on page 16-40

» “Prefix for the generated model name” on page 16-41

* “Input and Output Port Data Types” on page 16-42

* “Clock Enable output port” on page 16-44

* “Minimize Clock Enables and Reset Signals” on page 16-45

» “Use trigger signal as clock” on page 16-50

* “Enable HDL DUT port generation for test points” on page 16-51

* “RTL Annotations” on page 16-53

* “RTL Customizations for Constants and MATLAB Function Blocks” on page 16-58
* “RTL Customizations for RAMs” on page 16-60

16 HDL Code Generation Pane: Global Settings

16-2

“No-reset registers initialization” on page 16-62

“RTL Style” on page 16-65

“Timing Controller Settings” on page 16-73

“File Comment Customization” on page 16-75

“Choose Coding Standard and Report Options” on page 16-77
“Basic Coding Practices” on page 16-80

“RTL Description Rules for clock enables and resets” on page 16-86
“RTL Description Rules for Conditionals” on page 16-90

“Other RTL Description Rules” on page 16-94

“RTL Design Rules” on page 16-98

“Diagnostics for Optimizations” on page 16-101

“Diagnostics for Reals and Black Box Interfaces” on page 16-106

Global Settings Overview

Global Settings Overview

The Global Settings pane enables you to specify detailed characteristics of the
generated code, such as HDL element naming, and whether to map to a floating-point IP
library.

16-3

16 HDL Code Generation Pane: Global Settings

Clock Settings and Timing Controller Postfix

16-4

This section contains parameters in the Clock settings section of the HDL Code
Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to specify the clock signal name, the number of clock inputs, the active
clock edge, and the postfix for the clock process and the timing controller.

Clock input port

Specify the name for the clock input port in generated HDL code.
Settings

Default: clk

Enter the clock signal name in generated HDL code as a character vector.

For a generated entity my filter, if you specify ' filter clock' as the clock signal
name, the entity declaration is as shown in this code snippet:

ENTITY my filter IS

PORT(filter_clock : IN std_logic;
clk_enable : IN std logic;
reset : IN std_logic;
my filter_in : IN std logic vector (15 DOWNTO 0); -- sfix16_Enl5
my filter_out : OUT std logic vector (15 DOWNTO 0); -- sfix16_Enl5

)i
END my filter;

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved
word postfix string to form a valid VHDL or Verilog identifier. For example, if you specify
the reserved word signal, the resulting name string would be signal rsvd.

Command-Line Information

Property: ClockInputPort

Type: character vector

Value: A valid identifier in the target language
Default: 'clk'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Clock Settings and Timing Controller Postfix

For example, you can specify this property while generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'ClockInputPort', 'system clk')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'ClockInputPort', 'system clk')
See Also

makehdl

Clock inputs

Specify generation of single or multiple clock inputs.
Settings

Default: Single

Single

Generates a single clock input for the DUT. If the DUT is multirate, the input clock is
the master clock rate, and a timing controller is synthesized to generate additional
clocks as required. It is recommended that you use a single clock signal in your
design.

Multiple

Generates a unique clock for each Simulink rate in the DUT. The number of timing
controllers generated depends on the contents of the DUT. The oversample factor
must be 1 (default) to specify multiple clocks.

Command-Line Information
Property: ClockInputs

Type: character vector

Value: 'Single' | 'Multiple’
Default: 'Single’

16-5

16 HDL Code Generation Pane: Global Settings

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'ClockInputs', 'Multiple')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'ClockInputs', 'Multiple')
See Also

* makehdl
* “Check clock settings” on page 36-42

Clock edge

Specify the active clock edge that triggers Verilog always blocks or VHDL process
blocks in the generated HDL code.

Settings
Default: Rising.
Rising
The rising edge, or 0-to-1 transition, is the active clock edge.

Falling
The falling edge, or 1-to-0 transition, is the active clock edge.

Command-Line Information
Property: ClockEdge

Type: character vector

Value: 'Rising' | 'Falling'
Default: 'Rising'

16-6

Clock Settings and Timing Controller Postfix

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'ClockEdge’', 'Falling')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'ClockEdge', 'Falling"')
See Also

* makehdl
* “Check clock settings” on page 36-42

Clocked process postfix

Specify the postfix as a character vector. The code generator appends this postfix to HDL
clock process names.

Settings
Default: process

HDL Coder uses process blocks for register operations. The label for each of these
blocks is derived from a register name and the postfix process. For example, the code
generator derives the label delay pipeline process in the following block
declaration from the register name delay pipeline and the default postfix process.

delay pipeline process : PROCESS (clk, reset)
BEGIN

Command-Line Information
Property: ClockProcessPostfix

16-7

16 HDL Code Generation Pane: Global Settings

16-8

Type: character vector
Default: ' process'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'ClockProcessPostfix', 'delay postfix')
makehdl('sfir fixed/symmetric_ fir')

» Pass the property as an argument to the makehdl function.

makehdl('sfir_ fixed/symmetric_fir','ClockProcessPostfix', 'delay postfix')
See Also

makehdl

Timing controller postfix

Specify the postfix as a character vector. The code generator appends this suffix to the
DUT name to form the timing controller name.

Settings
Default: ' tc'
A timing controller file is generated if the design uses multiple rates, for example:

* When code is generated for a multirate model.
* When an area or speed optimization, or block architecture, introduces local multirate.
The timing controller name is based on the name of the DUT. For example, if the name of

your DUT is my test, by default, HDL Coder adds the postfix tc to form the timing
controller name, my test tc.

Command-Line Information
Property: TimingControllerPostfix

Clock Settings and Timing Controller Postfix

Type: character vector
Default: ' tc'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-9

16 HDL Code Generation Pane: Global Settings

Reset Settings

16-10

This section contains parameters in the Clock Settings section of the HDL Code
Generation > Global Settings pane of the Configuration Parameters dialog box. Using
these parameters, you can specify the reset name, whether to use a synchronous or
asynchronous reset, and whether the reset is asserted active-high or active-low.

Reset type

Specify whether to use asynchronous or synchronous reset logic when generating HDL
code for registers. It is recommended that you specify the Reset type as Synchronous
when you use a Xilinx device and Asynchronous when you use an Altera device.

Settings
Default: Asynchronous

Asynchronous

Use asynchronous reset logic. This reset logic samples the reset independent of the
clock signal.

The following process block, generated by a Unit Delay block, illustrates the use of
asynchronous resets. When the reset signal is asserted, the process block performs a
reset, without checking for a clock event.

Unit Delayl process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delayl outl <= (OTHERS => '0');
ELSIF clk'event AND clk = '1' THEN
IF clk enable = '1' THEN
Unit Delayl outl <= signed(x_in);
END IF;
END IF;
END PROCESS Unit Delayl process;

Synchronous
Use synchronous reset logic. This reset logic samples the reset with respect to the
clock signal.

The following process block, generated by a Unit Delay block, checks for a clock
event, the rising edge, before performing a reset:

Reset Settings

Unit Delayl process : PROCESS (clk)
BEGIN
IF rising edge(clk) THEN
IF reset = '1' THEN
Unit Delayl outl <= (OTHERS => '0');
ELSIF clk enable = '1' THEN
Unit Delayl outl <= signed(x in);
END IF;
END IF;
END PROCESS Unit Delayl process;

Command-Line Information
Property: ResetType

Type: character vector
Value: 'async' | 'sync'
Default: 'async'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify sync as the ResetType when you generate HDL code for
the symmetric_ fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'ResetType', 'async')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'ResetType', 'async')
makehdl('sfir fixed/symmetric_ fir')

See Also

* makehdl
* “Check for global reset setting for Xilinx and Altera devices” on page 36-8

Reset asserted level

Specify whether the asserted or active level of the reset input signal is active-high or
active-low.

16-11

16 HDL Code Generation Pane: Global Settings

16-12

Settings
Default: Active-high

Active-high

Specify that the asserted level of reset input signal is active-high. For example, the
following code fragment checks whether reset is active high before populating the
delay pipeline register:

Delay Pipeline Process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
delay pipeline(@ TO 50) <= (OTHERS => (OTHERS => '0'));

Active-low

Specify that the asserted level of reset input signal is active-low. For example, the
following code fragment checks whether reset is active low before populating the
delay pipeline register:

Delay Pipeline Process : PROCESS (clk, reset)
BEGIN
IF reset = '0' THEN
delay pipeline(@ TO 50) <= (OTHERS => (OTHERS => '0'));

Dependency

If you input a logic high value to the Reset input port, to reset the registers in your
design, set Reset asserted level to Active-high. if you input a logic low value to the
Reset input port, to reset the registers in your design, set Reset asserted level to
Active-low.

Command-Line Information

Property: ResetAssertedLevel

Type: character vector

Value: 'active-high' | 'active-low'
Default: 'active-high'

Reset Settings

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehdl.

hdlset param('sfir fixed', 'ResetAssertedLevel', 'active-high')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'ResetAssertedLevel', 'active-high')
See Also
* makehdl
* “Reset input port” on page 16-13
Reset input port
Enter the name for the reset input port in generated HDL code.
Settings
Default: reset
Enter a character vector for the reset input port name in generated HDL code.

For example, if you override the default with 'chip reset' for the generating system
myfilter, the generated entity declaration might look as follows:

ENTITY myfilter IS

PORT(clk : IN std logic;
clk enable : IN std logic;
chip_reset : IN std logic;
myfilter in : IN std logic vector (15 DOWNTO 0);
myfilter out : OUT std logic vector (15 DOWNTO 0);

)i
END myfilter;

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved
word postfix string to form a valid VHDL or Verilog identifier. For example, if you specify
the reserved word signal, the resulting name string would be signal rsvd.

16-13

16 HDL Code Generation Pane: Global Settings

16-14

Dependency

If you specify active-high for Reset asserted level, the reset input signal is asserted
active-high. To reset the registers in the entity, the input value to the Reset input port
must be high. If you specify active-low for Reset asserted level, the reset input signal is
asserted active-low. To reset the registers in the entity, the input value to the Reset input
port must be low.

Command-Line Information

Property: ResetInputPort

Type: character vector

Value: A valid identifier in the target language
Default: 'reset’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify sync as the ResetType when you generate HDL code for
the symmetric_ fir subsystem inside the sfir fixed model using either of these
methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'ResetInputPort', 'rstx')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'ResetInputPort','rstx')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Reset asserted level” on page 16-11

Clock Enable Settings

Clock Enable Settings

This section contains parameters in the Clock Settings section of theHDL Code
Generation > Global Settings pane of the Configuration Parameters dialog box. Using
these parameters, you can specify the name of the clock enable input port and for internal
clock enable signals in the generated code.

Clock enable input port

Specify the name for the clock enable input port in generated HDL code.

Settings

Default: clk enable

Enter the clock enable input port name in generated HDL code as a character vector.

For example, if you specify ' filter clock enable' for the generating subsystem
filter subsys, the generated entity declaration might look as follows:

ENTITY filter_subsys IS
PORT(clk : IN std_logic;

filter clock enable : IN std_logic;
reset : IN std_logic;
filter_subsys_in : IN std_logic_vector (15 DOWNTO 0);
filter_subsys out : OUT std_logic_vector (15 DOWNTO 0);

)i
END filter_subsys;

The clock enable input signal is asserted active-high (1). Thus, the input value must be
high for the generated entity's registers to be updated.

If you specify a VHDL or Verilog reserved word, the code generator appends a reserved
word postfix string to form a valid VHDL or Verilog identifier. For example, if you specify
the reserved word signal, the resulting name string would be signal rsvd.

Command-Line Information

Property: ClockEnableInputPort

Type: character vector

Value: A valid identifier in the target language
Default: 'clk enable'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-15

16 HDL Code Generation Pane: Global Settings

16-16

For example, you can specify this property when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', .
'ClockEnableInputPort’', 'clken')
* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'ClockEnableInputPort', 'clken')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl

* “Clock Enable output port” on page 16-44
* “Clock input port” on page 16-4

* “Reset input port” on page 16-13

Enable prefix

Specify the base name as a character vector for internal clock enables and other flow
control signals in generated code.

Settings
Default: 'enb’

Where only a single clock enable is generated, Enable prefix specifies the signal name
for the internal clock enable signal.

In some cases, the code generator can generate multiple clock enable signals. For
example, if you specify a cascade block implementation for certain blocks, multiple clock
enable signals are generated. In such cases, Enable prefix specifies a base signal name
for the first clock enable that is generated. For other clock enable signals, numeric tags
are appended to Enable prefix to form unique signal names. For example, the following
code fragment illustrates two clock enables that were generated when Enable prefix was
setto 'test clk enable':

COMPONENT mysys_tc
PORT(clk : IN std logic;

Clock Enable Settings

reset : IN std logic;
clk _enable : IN std logic;
test clk enable : OUT std logic;
test clk enable 51 0 : OUT std logic

);
END COMPONENT;

Command-Line Information
Property: EnablePrefix
Type: character vector
Default: 'enb’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir',
'EnablePrefix', 'int_enable')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'EnablePrefix','int _enable')
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Clock Enable output port” on page 16-44
* “Clock enable input port” on page 16-15

16-17

16 HDL Code Generation Pane: Global Settings

Oversampling factor

16-18

This parameter resides in the Clock Settings section of theHDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Use this parameter to
specify the frequency of the global oversampling clock as a multiple of the model's base
rate.

Settings
Default: 1.

Oversampling factor specifies the factor by which the global clock signal is a multiple of
the base rate at which the model operates. Use the Oversampling factor to integrate the
DUT with a larger system that supplies timing signals to other components in the system
at the global oversampling clock.

By default, HDL Coder does not generate a global oversampling clock. To generate a
global oversampling clock, specify an integer greater than one. If you use a multirate
DUT, make sure that other rates in the DUT divide evenly into the global oversampling
rate.

Generation of the global oversampling clock affects the generated HDL code and does not
affect the simulation behavior of your model.

Dependency

+ if you use multiple clocks, the Oversampling factor must be set to one. If you want to
use an Oversampling factor greater than one, set ClockInputs to Single.

* Ifyou specify an Oversampling factor greater than one, make sure that the clock-
rate pipelining optimization is enabled. You can specify this setting in the HDL Code
Generation > Target and Optimizations > Pipelining tab.

Clock-rate pipelining uses the Oversampling factor to convert the slow regions in
your model that operate at the base sample rate to the faster clock rate.

Command-Line Information
Property: Oversampling
Type: int

Oversampling factor

Value: integer greater than or equal to 1
Default: 1

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'Oversampling',5)

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'Oversampling’',5)
makehdl('sfir fixed/symmetric fir')

See Also

* makehdl
* “Generate a Global Oversampling Clock” on page 22-9
* “Clock Rate Pipelining” on page 14-15

16-19

16 HDL Code Generation Pane: Global Settings

Comment in header

16-20

This parameter resides in the General tab of the HDL Code Generation > Global
Settings pane of the Configuration Parameters dialog box. Use this parameter to specify
comment lines in header of generated HDL and test bench files.

Settings
Default: None

Text entered in this field generates a comment line in the header of generated model and
test bench files. The code generator adds leading comment characters for the target
language. When newlines or linefeeds are included, the code generator emits single-line
comments for each newline.

For example, if you specify this comment 'This is a comment line.\nThis is a
second line.' for the symmetric_ fir subsystem inside the sfir fixed model and
generate HDL code, the resulting header comment block appears as follows:

- Module: symmetric_fir

-- Simulink Path: sfir fixed/symmetric fir
- Created: 2006-11-20 15:55:25
- Hierarchy Level: 0

- This is a comment line.
- This is a second line.

- Simulink model description for sfir_ fixed:

-- This model shows how to use HDL Coder to check, generate,
- and verify HDL for a fixed-point symmetric FIR filter.

Command-Line Information
Property: UserComment
Type: character vector

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

Comment in header

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir',
'UserComment', 'This is a comment line.\nThis is a second line.')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed',
'UserComment', 'This is a comment line.\nThis is a second line.)
makehdl('sfir_ fixed/symmetric fir"')

See Also

* makehdl
* “File Comment Customization” on page 16-75
* “Generate Code with Annotations or Comments” on page 25-16

16-21

16 HDL Code Generation Pane: Global Settings

Language-Specific Identifiers and File Extensions

16-22

This section contains parameters in the Clock Settings section of theHDL Code
Generation > Global Settings pane of the Configuration Parameters dialog box. Using
these parameters, you can specify the Verilog and VHDL file extensions, entity, module,
and package name postfix, and the prefix for module names.

Verilog file extension

Specify the file name extension for generated Verilog files.

Settings

Default: .v

This field specifies the file name extension for generated Verilog files.
Dependency

To enable this option, set the target language to Verilog. You can specify the target
language by using the Language parameter in the HDL Code Generation pane.

Command-Line Information
Property: VerilogFileExtension
Type: character vector

Default: ' .v'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'VerilogFileExtension','.v"')
* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'VerilogFileExtension','.v"')
makehdl('sfir fixed/symmetric fir')

Language-Specific Identifiers and File Extensions

See Also

+ makehdl
* “Target” on page 12-3

VHDL file extension

Specify the file name extension for generated VHDL files.

Settings

Default: .vhd

This field specifies the file name extension for generated VHDL files.
Dependency

To enable this option, set the target language to VHDL. You can specify the target
language by using the Language parameter in the HDL Code Generation pane.

Command-Line Information
Property: VHDLFileExtension
Type: character vector

Default: ' .vhd'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.
* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'"VHDLFileExtension','.vhd')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'VHDLFileExtension','.vhd')
makehdl('sfir_ fixed/symmetric fir"')

16-23

16 HDL Code Generation Pane: Global Settings

16-24

See Also

* makehdl
* “Target” on page 12-3

Entity conflict postfix

Specify the text as a character vector to resolve duplicate VHDL entity or Verilog module
names in generated code.

Settings
Default: block
The specified postfix resolves duplicate VHDL entity or Verilog module names.

For example, if HDL Coder detects two entities with the name MyFilter, the coder
names the first entity MyFilter and the second entity MyFilter block.

Command-Line Information

Property: EntityConflictPostfix

Type: character vector

Value: A valid character vector in the target language
Default: ' block'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.
» Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ...
'"EntityConflictPostfix',' entity')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset_param('sfir fixed', 'EntityConflictPostfix',' entity')
makehdl('sfir_fixed/symmetric_fir')

See Also

makehdl

Language-Specific Identifiers and File Extensions

Package postfix

Specify a text as a character vector to append to the model or subsystem name to form
name of a package file.

Settings

Default: pkg

HDL Coder applies this option only if a package file is required for the design.
Dependency

This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the Multi-file
test bench option is selected.

Command-Line Information

Property: PackagePostfix

Type: character vector

Value: A character vector that is legal in a VHDL package file name
Default: ' pkg'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.
* Pass the property as an argument to the makehdl function.

makehdl('sfir_ fixed/symmetric_ fir', ...
'PackagePostfix',' pkg')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'PackagePostfix',' pkg')
makehdl('sfir_fixed/symmetric_ fir')

16-25

16 HDL Code Generation Pane: Global Settings

16-26

Reserved word postfix

Specify a text as a character vector to append to value names, postfix values, or labels
that are VHDL or Verilog reserved words.

Settings
Default: rsvd

The reserved word postfix is applied to identifiers (for entities, signals, constants, or other
model elements) that conflict with VHDL or Verilog reserved words. For example, if your
generating model contains a signal named mod, HDL Coder adds the postfix _rsvd to
form the name mod rsvd.

Command-Line Information
Property: ReservedWordPostfix
Type: character vector

Default: ' rsvd'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', ...
'ReservedWordPostfix',' reserved')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'ReservedWordPostfix',' reserved)
makehdl('sfir_fixed/symmetric_fir')

Module name prefix
Specify a prefix for every module or entity name in the generated HDL code.
Settings

Default: ''

Language-Specific Identifiers and File Extensions

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder
also applies this prefix to generated script file names.

You can specify the module name prefix to avoid name collisions if you plan to instantiate
the generated HDL code multiple times in a larger system.

Command-Line Information
Property: ModulePrefix
Type: character vector
Default: '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Suppose you have a DUT, myDut, containing an internal module, myUnit. You can prefix
the modules within your design with unitl by using either of these methods.

» Pass the property as an argument to the makehdl function.

makehdl('myDUT', ...
'ModulePrefix', 'unitl ')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('myUnit/myDUT', 'ModulePrefix', 'unitl ')
makehdl('myDUT")

In the generated code, your HDL module names are unitl myDut and unitl myUnit,
with corresponding HDL file names. Generated script file names also have the unitl
prefix.

16-27

16 HDL Code Generation Pane: Global Settings

Split VHDL entity and architecture

16-28

Split entity file postfix

Enter a character vector to be appended to the model name to form the name of a
generated VHDL entity file.

Settings

Default: entity

Dependency

This parameter is enabled by selecting the Split entity and architecture check box.
When you select this check box, HDL Coder places the VHDL entity and architecture code
in separate files.

Command-Line Information

Property: SplitEntityFilePostfix

Type: character vector

Default: ' entity'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Split arch file postfix

Enter a character vector to be appended to the model name to form the name of a
generated VHDL architecture file.

Settings

Default: arch

Dependency

This parameter is enabled by selecting the Split entity and architecture check box.

When you select this check box, HDL Coder places the VHDL entity and architecture code
in separate files.

Split VHDL entity and architecture

Command-Line Information

Property: SplitArchFilePostfix

Type: character vector

Default: ' arch'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Split entity and architecture

Specify whether generated VHDL entity and architecture code is written to a single VHDL
file or to separate files.

Settings
Default: Off

¥ On
VHDL entity and architecture definitions are written to separate files.

I off

VHDL entity and architecture code is written to a single VHDL file.
Tips
The names of the entity and architecture files derive from the base file name (as specified
by the generating model or subsystem name). By default, postfix strings identifying the
file as an entity (_entity) or architecture (_arch) are appended to the base file name.
You can override the default and specify your own postfix as a character vector.

For example, instead of all generated code residing in MyFIR. vhd, you can specify that
the code reside in MyFIR entity.vhd and MyFIR arch.vhd.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Selecting this option enables the following parameters:

16-29

16 HDL Code Generation Pane: Global Settings

* Split entity file postfix
* Split architecture file postfix

Command-Line Information
Property: SplitEntityArch
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-30

Complex Signals Postfix

Complex Signals Postfix

Complex real part postfix

Specify the character vector to append to real part of complex signal names.

Settings

Default: ' re'

Enter a text to be appended to the names generated for the real part of complex signals.
Command-Line Information

Property: ComplexRealPostfix

Type: character vector

Default: ' re'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Complex imaginary part postfix

Specify character vector to append to imaginary part of complex signal names.
Settings

Default: ' im'

Enter a character vector to be appended to the names generated for the imaginary part of
complex signals.

Command-Line Information
Property: ComplexImagPostfix
Type: character vector

Default: ' _im'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-31

16 HDL Code Generation Pane: Global Settings

VHDL Architecture and Library Name

16-32

VHDL architecture name

Specify the architecture name for your DUT in the generated HDL code.
Settings

Default: 'rtl'

Specify the VHDL architecture name for your DUT in the generated HDL code as a
character vector.

Command-Line Information
Property: VHDLArchitectureName
Type: character vector

Default: 'rtl'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

VHDL library name

Specify the target library name for the generated VHDL code.
Settings

Default: 'work'

Target library name for generated VHDL code.
Command-Line Information

Property: VHDLLibraryName

Type: character vector

Default: 'work'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Pipeline postfix

Pipeline postfix

Specify the postfix as a character vector to append to names of input or output pipeline
registers generated for pipelined block implementations.

Settings
Default: ' pipe'

You can specify a generation of input and/or output pipeline registers for selected blocks.
The Pipeline postfix option defines a character vector that HDL Coder appends to names
of input or output pipeline registers when generating code.

Command-Line Information
Property: PipelinePostfix

Type: character vector

Default: ' pipe'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Suppose you specify a pipelined output implementation for a Product block in a model, as
in the following code:

hdlset param('sfir fixed/symmetric fir/Product', 'OutputPipeline’', 2)
To append a postfix 'testpipe’' to the generated pipeline register names, use either of
these methods:

» Pass the property as an argument to the makehdl function.

makehdl(gch, 'PipelinePostfix', 'testpipe')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param(gcs, 'PipelinePostfix', 'testpipe')
makehdl('myDUT")

The following excerpt from generated VHDL code shows process the PROCESS code, with
postfixed identifiers, that implements two pipeline stages:

Product outtestpipe process : PROCESS (clk, reset)
BEGIN

16-33

16 HDL Code Generation Pane: Global Settings

IF reset = '"1' THEN
Product outtestpipe reg <= (OTHERS => to_signed(0, 33));
ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN
Product outtestpipe reg(0) <= Product outl;
Product outtestpipe reg(l) <= Product outtestpipe reg(0);
END IF;
END IF;
END PROCESS Product outtestpipe process;

16-34

Generate VHDL code for model references into a single library

Generate VHDL code for model references into a single
library

Specify whether VHDL code generated for model references is in a single library, or in
separate libraries.

Settings
Default: Off
¥ On
Generate VHDL code for model references into a single library.

I off
For each model reference, generate a separate VHDL library.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: UseSinglelLibrary

Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-35

16 HDL Code Generation Pane: Global Settings

Generate Statement Labels

16-36

Block generate label

Specify postfix to block labels used for HDL GENERATE statements.
Settings

Default: ' gen'

Specify the postfix as a character vector. HDL Coder appends the postfix to block labels
used for HDL GENERATE statements.

Command-Line Information
Property: BlockGeneratelLabel
Type: character vector

Default: ' gen'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Output generate label

Specify postfix to output assignment block labels for VHDL GENERATE statements.
Settings

Default: 'outputgen’

Specify the postfix as a character vector. HDL Coder appends this postfix to output
assignment block labels in VHDL GENERATE statements.

Command-Line Information
Property: OutputGeneratelLabel
Type: character vector

Default: 'outputgen’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Generate Statement Labels

Instance generate label

Specify text to append to instance section labels in VHDL GENERATE statements.
Settings

Default: ' gen'

Specify the postfix as a character vector. HDL Coder appends the postfix to instance
section labels in VHDL GENERATE statements.

Command-Line Information
Property: InstanceGenerateLabel
Type: character vector

Default: ' gen'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-37

16 HDL Code Generation Pane: Global Settings

Vector and Component Instances Labels

16-38

Vector prefix

Specify prefix to vector names in generated code.
Settings

Default: 'vector of '

Specify the prefix as a character vector. HDL Coder appends this prefix to vector names
in generated code.

Command-Line Information
Property: VectorPrefix
Type: character vector
Default: 'vector of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Instance postfix

Specify postfix to generated component instance names.
Settings

Default: ' ' (no postfix appended)

Specify the postfix as a character vector. HDL Coder appends the postfix to component
instance names in generated code.

Command-Line Information
Property: InstancePostfix
Type: character vector
Default: '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Vector and Component Instances Labels

Instance prefix

Specify prefix to generated component instance names.
Settings

Default: 'u_ '

Specify the prefix as a character vector. HDL Coder appends the prefix to component
instance names in generated code.

Command-Line Information
Property: InstancePrefix
Type: character vector
Default: 'u '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-39

16 HDL Code Generation Pane: Global Settings

Map file postfix

16-40

Specify postfix appended to file name for generated mapping file.

Settings
Default: ' map.txt'

Specify the postfix as a character vector. HDL Coder appends the postfix to file name for
generated mapping file.

For example, if the name of the device under test is my design, HDL Coder adds the
postfix map.txt to form the name my design map.txt.

Command-Line Information
Property: HDLMapFilePostfix
Type: character vector

Default: ' map.txt'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Prefix for the generated model name

Prefix for the generated model name

Specify prefix to name of generated model.

Settings
Default: 'gm '

Specify the prefix as a character vector. HDL Coder appends the prefix to name of
generated model.

Command-Line Information
Property: GeneratedModelNamePrefix
Type: character vector

Default: 'gm '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to indicate that you are using the generated model as a software interface
model, you can use the prefix sm . Specify this property when you generate HDL code for
the symmetric_ fir subsystem inside the sfir fixed model using either of these
methods.

* Pass the property as an argument to the makehdl function.

makehdl('sfir_ fixed/symmetric_ fir', ...
'GeneratedModelNamePrefix', 'sm_"')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1l.

hdlset param('sfir fixed', 'GeneratedModelNamePrefix', 'sm ')
makehdl('sfir_fixed/symmetric_ fir')

16-41

16 HDL Code Generation Pane: Global Settings

Input and Output Port Data Types

16-42

Input data type

Specify the HDL data type for the input ports of the model.
Settings

For VHDL, the options are:

Default: std logic vector

std logic vector

Specifies VHDL type STD LOGIC VECTOR.
signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:
Default: wire

In generated Verilog code, the data type for all ports is 'wire', and cannot be modified.
Therefore, Input data type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information

Property: InputType

Type: character vector

Value: (for VHDL)'std logic vector' | 'signed/unsigned'’
(for Verilog) 'wire'

Default: (for VHDL) 'std logic vector'

(for Verilog) 'wire'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Input and Output Port Data Types

Output data type

Specify the HDL data type for the output ports of the model.
Settings

For VHDL, the options are:

Default: Same as input data type

Same as input data type
Specifies that output ports of the model have the same type specified by Input data
type.
std logic vector
Specifies VHDL type STD LOGIC VECTOR as the data type of the output port.
signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED as the data type of the output port.

For Verilog, the options are:
Default: wire

In generated Verilog code, the data type for all ports is 'wire', and cannot be modified.
Therefore, Output data type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information

Property: OutputType

Type: character vector

Value: (for VHDL)'std logic vector' | 'signed/unsigned’

(for Verilog) 'wire'

Default: If the property is left unspecified, output ports have the same type specified by
InputType.

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-43

16 HDL Code Generation Pane: Global Settings

Clock Enable output port

Specify the name for the generated clock enable output port as a character vector.

Settings
Default: ce out

A clock enable output is generated when the design requires one.

Command-Line Information
Property: ClockEnableOQutputPort
Type: character vector

Default: 'ce out'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

“Clock Enable Settings” on page 16-15

16-44

Minimize Clock Enables and Reset Signals

Minimize Clock Enables and Reset Signals

Minimize clock enables

Omit generation of clock enable logic for single-rate designs.
Settings

Default: Off

|7On

For single-rate models, omit generation of clock enable logic wherever possible. The
following VHDL code example does not define or examine a clock enable signal. When
the clock signal (c1k) goes high, the current signal value is output.

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END PROCESS Unit Delay process;

I off

Generate clock enable logic. The following VHDL code extract represents a register
with a clock enable (enb)

Unit Delay process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delay outl <= to signed(0, 32);
ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN
Unit Delay outl <= Inl signed;
END IF;
END IF;
END PROCESS Unit Delay process;

16-45

16 HDL Code Generation Pane: Global Settings

16-46

Exceptions

In some cases, HDL Coder emits clock enables even when Minimize clock enables is
selected. These cases are:

* Registers inside Enabled, State-Enabled, and Triggered subsystems.

e Multirate models.

* The coder always emits clock enables for the following blocks:

commseqgen?2/PN Sequence Generator
dspsigops/NCO

Note HDL support for the NCO block will be removed in a future release. Use the
NCO HDL Optimized block instead.

dspsrcs4/Sine Wave
hdldemolib/HDL FFT
built-in/DiscreteFir
dspmlti4/CIC Decimation
dspmlti4/CIC Interpolation
dspmlti4/FIR Decimation
dspmlti4/FIR Interpolation
dspadpt3/LMS Filter
dsparch4/Biquad Filter

Note If your design uses a RAM block such as a Dual Rate Dual Port RAM with the RAM
Architecture set to Generic RAM without Clock Enable, the code generator
ignores the Minimize clock enables setting.

Command-Line Information
Property: MinimizeClockEnables
Type: character vector

Value:

‘on' | 'off'

Default: 'off'

Minimize Clock Enables and Reset Signals

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to minimize Clock Enable signals when you generate HDL code for the
symmetric_ fir subsystem inside the sfir fixed model, use either of these methods.

Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', ...
'MinimizeClockEnables', 'on')

When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'MinimizeClockEnables','on')
makehdl('sfir_fixed/symmetric_fir')

Minimize global resets

Omit generation of reset logic in the HDL code.

Settings

Default: Off

|7On

When you enable this setting, the code generator tries to minimize or remove the
global reset logic from the HDL code. This code snippet corresponds to the Verilog
code generated for a Delay block in the Simulink model. The code snippet shows that
HDL Coder removed the reset logic.

always @(posedge clk)
begin : Delay Synchronous process
if (enb) begin
Delay Synchronous outl <= Dataln;
end
end

™ off

When you disable this parameter, HDL Coder generates the global reset logic in the
HDL code. This Verilog code snippet shows the reset logic generated for the Delay
block.

16-47

16 HDL Code Generation Pane: Global Settings

16-48

always @(posedge clk or posedge reset)
begin : Delay Synchronous process
if (reset == 1'bl) begin
Delay Synchronous outl <= 1'b0;
end
else begin
if (enb) begin
Delay Synchronous outl <= Dataln;
end
end
end

Dependency

If you select Minimize global resets, the generated HDL code contains registers that do
not have a reset port. If you do not initialize these registers, there can be potential
numerical mismatches in the HDL simulation results. To avoid simulation mismatches,
you can initialize the registers by using the “No-reset registers initialization” on page 16-
62 setting.

By default, the No-reset registers initialization setting has the value Generate
initialization inside module, which means that the code generator initializes the
registers as part of the HDL code generated for the DUT. To initialize the registers with
the script, set No-reset registers initialization to Generate an external script.
You must use a zero initial value for the blocks in your Simulink model.

Exceptions

Sometimes, when you select Minimize global resets, HDL Coder generates the reset
logic, if you have:

» Blocks with state that have a nonzero initial value, such as a Delay block with non-zero
Initial Condition.
* Enumerated data types for blocks with state.
* Subsystem blocks with BlackBox HDL architecture where you request a reset signal.
* Multirate models with Timing controller architecture set to default.
If you set Timing controller architecture to resettable, HDL Coder generates a

reset port for the timing controller. If you set Minimize global reset signals to
‘on', the code generator removes this reset port.

Minimize Clock Enables and Reset Signals

e Truth Table
e Chart
« MATLAB Function block

Command-Line Information
Property: MinimizeGlobalResets
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to minimize global reset signals when you generate HDL code for the
symmetric_fir subsystem inside the sfir fixed model, use either of these methods.
* Pass the property as an argument to the makehdl function.

makehdl('sfir_ fixed/symmetric_ fir', ...
'MinimizeGlobalResets', 'on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehd1.

hdlset param('sfir fixed', 'MinimizeGlobalResets','on')
makehdl('sfir_fixed/symmetric_ fir')

16-49

16 HDL Code Generation Pane: Global Settings

Use trigger signal as clock

16-50

Enable this setting to use trigger input signal as clock in generated HDL code.

Settings
Default: Off

|7On

For triggered subsystems, use the trigger input signal as a clock in the generated
HDL code.

I off

For triggered subsystems, do not use the trigger input signal as a clock in the
generated HDL code.

Command-Line Information
Property: TriggerAsClock

Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to generate HDL code that uses the trigger signal as clock for triggered
subsystems within the sfir fixed/symmetric fir DUT subsystem, use either of
these methods:

» Pass the property as an argument to the makehdl function.

makehdl ('sfir fixed/symmetric sfir', 'TriggerAsClock','on')

* When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'TriggerAsClock','on')
makehdl('sfir fixed/symmetric fir')

Enable HDL DUT port generation for test points

Enable HDL DUT port generation for test points

Enable this setting to create DUT output ports for the test point signals in the generated
HDL code.

Settings
Default: Off

|7On

When you enable this setting, the code generator creates DUT output ports for the
test point signals in the generated HDL code. You can observe the test point signals
and debug your design by connecting a Scope block to the output ports corresponding
to these signals.

™ off

When you disable this setting, the code generator preserves the test point signals and
does not create DUT output ports in the generated HDL code.

Note The code generator ignores this setting when you designate test points for states
inside a Stateflow Chart.

Command-Line Information
Property: EnableTestpoints

Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, after you designate signals as testpoints for the sfir fixed/
symmetric fir DUT subsystem, to generate DUT output ports in the HDL code, use
either of these methods:

* Pass the property as an argument to the makehdl function.

makehdl ('sfir fixed/symmetric sfir', 'EnableTestpoints','on')

16-51

16 HDL Code Generation Pane: Global Settings

When you use hdlset param, you can set the parameter on the model and then
generate HDL code using makehdl.

hdlset param('sfir fixed', 'EnableTestpoints','on')
makehdl('sfir fixed/symmetric fir"')

See Also

“Model and Debug Test Point Signals with HDL Coder™” on page 10-40

16-52

RTL Annotations

RTL Annotations

Use Verilog "timescale directives
Specify use of compiler * timescale directives in generated Verilog code.
Settings
Default: On
¥ On
Use compiler ~timescale directives in generated Verilog code.

I off
Suppress the use of compiler *timescale directives in generated Verilog code.

Tip

The " timescale directive provides a way of specifying different delay values for multiple
modules in a Verilog file. This setting does not affect the generated test bench.

Dependency

This option is enabled when the target language (specified by the Language option) is
Verilog.

Command-Line Information
Property: UseVerilogTimescale
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Inline VHDL configuration

Specify whether generated VHDL code includes inline configurations.

16-53

16 HDL Code Generation Pane: Global Settings

16-54

Settings
Default: On
v On
Include VHDL configurations in files that instantiate a component.

I off

Suppress the generation of configurations and require user-supplied external
configurations. Use this setting if you are creating your own VHDL configuration files.

Tip

HDL configurations can be either inline with the rest of the VHDL code for an entity or
external in separate VHDL source files. By default, HDL Coder includes configurations for
a model within the generated VHDL code. If you are creating your own VHDL
configuration files, suppress the generation of inline configurations.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: InlineConfigurations
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Concatenate type safe zeros
Specify use of syntax for concatenated zeros in generated VHDL code.
Settings

Default: On

RTL Annotations

V' On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically, this syntax is
preferred.

I off
Use the syntax "000000. . . " for concatenated zeros. This syntax can be easier to

read and more compact, but it can lead to ambiguous types.
Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: SafeZeroConcat
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Emit time/date stamp in header

Specify whether or not to include time and date information in the generated HDL file
header.

Settings
Default: On

¥ on
Include time/date stamp in the generated HDL file header.

-- File Name: hdlsrc\symmetric fir.vhd
-- Created: 2011-02-14 07:21:36

16-55

16 HDL Code Generation Pane: Global Settings

I off
Omit time/date stamp in the generated HDL file header.

-- File Name: hdlsrc\symmetric fir.vhd

By omitting the time/date stamp in the file header, you can more easily determine if
two HDL files contain identical code. You can also avoid redundant revisions of the
same file when checking in HDL files to a source code management (SCM) system.

Command-Line Information
Property: DateComment
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Include requirements in block comments

Enable or disable generation of requirements comments as comments in code or code
generation reports.

Settings
Default: On

¥ On

If the model contains requirements comments, include them as comments in code or
code generation reports. See “Requirements Comments and Hyperlinks” on page 25-
17.

I off
Do not include requirements as comments in code or code generation reports.

Command-Line Information
Property: RequirementComments

16-56

RTL Annotations

Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-57

16 HDL Code Generation Pane: Global Settings

RTL Customizations for Constants and MATLAB Function
Blocks

16-58

Inline MATLAB Function block code
Inline HDL code for MATLAB Function blocks.
Settings

Default: Off

|7On

Inline HDL code for MATLAB Function blocks to avoid instantiation of code for
custom blocks.

I off
Instantiate HDL code for MATLAB Function blocks and do not inline.
Command-Line Information
Property: InlineMATLABBlockCode
Type: character vector

Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, to enable inlining of the code:

mdl = 'my custom block model';
hdlset param(mdl, 'InlineMATLABBlockCode', 'on');

For example, to enable instantiation of HDL code:

mdl = 'my custom block model';
hdlset param(mdl, 'InlineMATLABBlockCode', 'off"');

RTL Customizations for Constants and MATLAB Function Blocks

Represent constant values by aggregates

Specify whether constants in VHDL code are represented by aggregates, including
constants that are less than 32 bits.

Settings
Default: Off

|7On

HDL Coder represents constants as aggregates. The following VHDL constant
declarations show a scalar less than 32 bits represented as an aggregate:

GainFactor gainparam <= (14 => '1', OTHERS => '0');

I off

The coder represents constants less than 32 bits as scalars and constants greater
than or equal to 32 bits as aggregates. The following VHDL code was generated by
default for a value less than 32 bits:

GainFactor gainparam <= to signed(16384, 16);
Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: UseAggregatesForConst
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-59

16 HDL Code Generation Pane: Global Settings

RTL Customizations for RAMs

16-60

Initialize all RAM blocks

Enable or suppress generation of initial signal value for RAM blocks.
Settings
Default: On

¥ On
For RAM blocks, generate initial values of '0' for both the RAM signal and the output
temporary signal.

I off
For RAM blocks, do not generate initial values for either the RAM signal or the output
temporary signal.

Tip

This parameter applies to these RAM blocks in the HDL Coder > HDL RAMs Block

Library in the Simulink Library Browser:

* Dual Port RAM

* Simple Dual Port RAM

» Single Port RAM

* Dual Rate Dual Port RAM

Command-Line Information
Property: InitializeBlockRAM
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

RTL Customizations for RAMs

RAM Architecture

Select RAM architecture with clock enable, or without clock enable, for all RAMs in DUT
subsystem.

Settings
Default: RAM with clock enable
Select one of the following options from the menu:

* RAM with clock enable: Generate RAMs with clock enable.
* Generic RAM without clock enable: Generate RAMs without clock enable.

Command-Line Information

Property: RAMArchitecture

Type: character vector

Value: 'WithClockEnable' | 'WithoutClockEnable'
Default: 'WithClockEnable'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-61

16 HDL Code Generation Pane: Global Settings

No-reset registers initialization

16-62

Specify whether you want to initialize registers without reset and the mode of
initialization.

Settings
Default: Generate initialization inside module
The options are:

Do not initialize
HDL Coder does not initialize the registers without a reset port.
Generate an external script

HDL Coder generates a script to initialize registers that do not have a reset port in
the generated code.

Generate initialization inside module

HDL Coder initializes the registers that do not have a reset port as part of the HDL
code generated for the DUT. In Verilog, an initial construct in the corresponding
module definition initializes the no-reset registers. In VHDL, the initialization code is
part of the signal declaration statements.

Usage Notes

If you have blocks with ResetType on page 21-22 set to none in your Simulink model or
specify the adaptive pipelining optimization, the generated HDL code can contain
registers without a reset port. If you do not initialize these registers, there can be
potential numerical mismatches in the HDL simulation results, because the registers are
insensitive to the global reset logic. To avoid simulation mismatches, use this setting to
initialize these registers in the generated code. For better simulation results, if you have
registers without a reset port at the boundaries of the DUT, select Initialize test bench
inputs in the Test Bench pane. Setting this property provides an initial value for the
data driven to the DUT, and initializes the registers with these values.

No-reset registers initialization

HDL code for
DUT

externally and does not
affect the HDL code for
the DUT.

not initialize the
registers in the
generated code.

Functionalit |Script None value InsideModule
y
Generated The script is generated |HDL Coder does The code for initializing

the registers is part of the
HDL code for the DUT.

HDL
simulator
support

The syntax of the script
is compliant with
ModelSim® 10.2¢ or
later. Other HDL
simulators or older
ModelSim versions do
not support the syntax of
the initialization script.
This mode does not
support enumeration
types, and initializing
the registers with non
zero values.

There can be
numerical
mismatches in the
HDL simulation
results, because
this mode does not
initialize the
registers that do
not have a reset
port.

All HDL simulators
support this initialization
mode, and initialize the
no-reset registers with
appropriate values.

Synthesis tool
support

As the script does not
affect the HDL code
generated for the DUT,
all synthesis tools
support this initialization
mode.

Synthesis tools do
not initialize the
no-reset registers
in this mode.

Later versions of synthesis
tools support the
initialization constructs in
the generated code.
However, it is possible that
older versions do not
synthesize the
initialization constructs.
To avoid such issues, make
sure that synthesis tools
can synthesize the
generated code.

Command-Line Information
Property: NoResetInitializationMode
Type: character vector
Value: 'InsideModule’ | 'None''Script’
Default: 'InsideModule’

16-63

16 HDL Code Generation Pane: Global Settings

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

“Minimize global resets” on page 16-47

16-64

RTL Style

RTL Style

Use “rising_edge/falling_edge” style for registers

Specify whether generated code uses the VHDL rising edge or falling edge
function to detect clock transitions.

Settings
Default: Off

IFOn

Generated code uses the VHDL rising edge or falling edge function.

For example, the following code, generated from a Unit Delay block, uses
rising edge to detect positive clock transitions:

Unit Delayl process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delayl outl <= (OTHERS => '0');
ELSIF rising edge(clk) THEN
IF clk enable = '1' THEN
Unit Delayl outl <= signed(x_in);
END IF;
END IF;
END PROCESS Unit Delayl process;

I off
Generated code uses the 'event syntax.

For example, the following code, generated from a Unit Delay block, uses clk'event
AND clk = '1' to detect positive clock transitions:

Unit Delayl process : PROCESS (clk, reset)
BEGIN
IF reset = '1' THEN
Unit Delayl outl <= (OTHERS => '0');
ELSIF clk'event AND clk = '1' THEN
IF clk enable = '1' THEN
Unit Delayl outl <= signed(x in);
END IF;
END IF;
END PROCESS Unit Delayl process;

16-65

16 HDL Code Generation Pane: Global Settings

Dependency
This option is enabled when the target language is VHDL.

Command-Line Information
Property: UseRisingEdge
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Minimize intermediate signals

Specify whether to optimize HDL code for debuggability or code coverage.
Settings
Default: Off

¥ On

Optimize for code coverage by minimizing intermediate signals. For example, suppose
that the generated code with this setting off is:

const3 <= to signed(24, 7);

subtractor sub cast <= resize(const3, 8);

subtractor sub cast 1 <= resize(delayout, 8);
subtractor sub temp <= subtractor sub cast - subtractor sub cast 1;

With this setting on, HDL Coder optimizes the output to:

subtractor_sub temp <= 24 - (resize(delayout, 8));

The code generator removes the intermediate signals const3,
subtractor sub cast, and subtractor sub cast 1.

I off

Optimize for debuggability by preserving intermediate signals.

Command-Line Information
Property: MinimizeIntermediateSignals
Type: character vector

16-66

RTL Style

Value: 'on' | 'off'
Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.
Scalarize vector ports
Flatten vector ports into a structure of scalar ports in VHDL code
Settings
Default: Off
¥ On
When generating code for a vector port, generate a structure of scalar ports.

I off

When generating code for a vector port, generate a type definition and port
declaration for the vector port.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: ScalarizePorts
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Usage Notes

The ScalarizePorts property lets you control how HDL Coder generates VHDL code
for vector ports.

For example, consider the subsystem vsum in the following figure.

16-67

16 HDL Code Generation Pane: Global Settings

16-68

In1 Jutl

By default, ScalarizePortsis 'off'. The coder generates a type definition and port
declaration for the vector port Inl like the following:
PACKAGE simplevectorsum pkg IS
TYPE vector of std logic vectorl6 IS ARRAY (NATURAL RANGE <>)
OF std_logic_vector(15 DOWNTO 0);

TYPE vector_of signedl16 IS ARRAY (NATURAL RANGE <>) OF signed(15 DOWNTO 0);
END simplevectorsum_pkg;

ENTITY vsum IS
PORT(Inl : IN vector of std logic vectorl6(® TO 9); -- intl6 [10]
Outl : OUT std logic vector(19 DOWNTO 0) -- sfix20
);
END vsum;

Under VHDL typing rules two types declared in this manner are not compatible across
design units. This may cause problems if you need to interface two or more generated
VHDL code modules.

You can flatten such a vector port into a structure of scalar ports by enabling
ScalarizePorts in your makehdl command, as in the following example.

makehdl(gcs, 'ScalarizePorts', 'on')

The listing below shows the generated ports.

ENTITY vsum IS

PORT(Inl 0 : IN std logic vector(15 DOWNTO 0); -- intl6
Inl 1 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 2 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 3 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 4 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 5 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 6 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 7 H IN std logic vector(15 DOWNTO 0); -- intl6
Inl 8 H IN std logic vector(15 DOWNTO 0); -- intlé
Inl 9 H IN std logic vector(15 DOWNTO 0); -- intl6
Outl H OUT std logic vector(19 DOWNTO 0) -- sfix20

RTL Style

)3

END vsum;

Loop unrolling

Specify whether VHDL FOR and GENERATE loops are unrolled and omitted from generated
VHDL code.

Settings
Default: Off

¥ on
Unroll and omit FOR and GENERATE loops from the generated VHDL code. (In Verilog
code, loops are always unrolled.)

I off
Include FOR and GENERATE loops in the generated VHDL code.

Tip

* Ifyou are using an electronic design automation (EDA) tool that does not support

GENERATE loops, select this option to omit loops from your generated VHDL code.

+ Setting this option does not affect results obtained from simulation or synthesis of
generated VHDL code.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: LoopUnrolling
Type: character vector
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-69

16 HDL Code Generation Pane: Global Settings

16-70

Generate parameterized HDL code from masked subsystem

Generate reusable HDL code for subsystems with the same tunable mask parameters, but
with different values.

Settings
Default: Off
¥ On

Generate one reusable HDL file for multiple masked subsystems with different values
for the mask parameters. HDL Coder automatically detects subsystems with tunable
mask parameters that are sharable.

Inside the subsystem, you can use the mask parameter only in the following blocks
and parameters.

Block Parameter Limitation
Constant Constant value on the |None
Main tab of the dialog
box
Gain Gain on the Main tab of |Parameter data type
the dialog box must be the same for all
Gain blocks.

I off
Generate a separate HDL file for each masked subsystem.
Command-Line Information
Property: MaskParameterAsGeneric
Type: character vector

Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

“Generate Reusable Code for Atomic Subsystems” on page 27-19

RTL Style

Enumerated Type Encoding Scheme

Specify the encoding scheme to represent enumeration types in the generated HDL code.
Settings
Default: default

Use default, onehot, twohot, or binary encoding scheme to represent enumerated
types in the generated HDL code.

default

The code generator uses decimal encoding in Verilog and VHDL-native enumerated
types in VHDL. This example shows the verilog code snippet of this encoding scheme
for a Stateflow Chart that has four states.

parameter

is Chart IN s idle = 2'd0,

is Chart IN s rx = 2'dl,

is Chart IN s wait 0 = 2'd2,

is Chart IN s wait tb = 2'd3;
onehot

The code generator uses a one-hot encoding scheme where a single bit is high to
represent each enumeration value. This example shows the verilog code snippet of
this encoding scheme for a Stateflow Chart that has four states.

parameter
is Chart IN s idle = 4'b0001,
is Chart IN s rx = 4'b0010,
is Chart IN s wait 0 = 4'b0100,
is Chart IN s wait tb = 4'b1000;
This encoding scheme does not support more than 64 enumeration values or number
of states.
twohot

The code generator uses a two-hot encoding scheme where two bits are high to
represent each enumeration value. This example shows the verilog code snippet of
this encoding scheme for a Stateflow Chart that has four states.

parameter
is Chart IN s idle = 4'b0011,

16-71

16 HDL Code Generation Pane: Global Settings

is Chart IN s rx = 4'b0101,
is Chart IN s walt 0 = 4'bo110,
is Chart IN s wait tb = 4'b1001;

binary
The code generator uses a binary encoding scheme to represent each enumeration
value. This example shows the verilog code snippet of this encoding scheme for a
Stateflow Chart that has four states.

parameter

is Chart IN s idle = 2'b00

is Chart IN s rx = 2'b01,

is Chart IN s wait 0 = 2'bl0,
is Chart IN s wait tb = 2'bll;

In VHDL, the generated code uses CONSTANT types to encode nondefault enumeration
values in the generated code. For example, this code snippet shows the generated VHDL
code when you use the two-hot state encoding for a Stateflow Chart that has four states.

PACKAGE s pkg IS

-- Constants

-- Two-hot encoded enumeratlon values for type state type is Chart

CONSTANT IN s idle : std logic vector(3 DOWNTO 0) :=
"0011" .

CONSTANT IN s rx : std logic vector(3 DOWNTO 0) :=
IIOlOlII;

CONSTANT IN s wait O : std logic vector(3 DOWNTO 0) :=
"0110";

CONSTANT IN s wait tb : std logic vector(3 DOWNTO 0) :=
n 1001";

END s pkg;

Command-Line Information

Property: EnumEncodingScheme

Type: character vector

Value: 'default' | 'onehot' | 'twohot' 'binary’
Default: 'default"’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-72

Timing Controller Settings

Timing Controller Settings

Optimize timing controller

Optimize timing controller entity for speed and code size by implementing separate
counters per rate.

Settings
Default: On

|7On

HDL Coder generates multiple counters (one counter for each rate in the model) in
the timing controller code. The benefit of this optimization is that it generates faster
logic, and the size of the generated code is usually much smaller.

I off

The coder generates a timing controller that uses one counter to generate all rates in
the model.

Tip
A timing controller code file is generated if required by the design, for example:

* When code is generated for a multirate model
* When a cascade block implementation for certain blocks is specified

This file contains a module defining timing signals (clock, reset, external clock enable
inputs and clock enable output) in a separate entity or module. In a multirate model, the
timing controller entity generates the required rates from a single master clock using one
or more counters and multiple clock enables.

The timing controller name derives from the name of the subsystem that is selected for
code generation (the DUT), and the current value of the property
TimingControllerPostfix. For example, if the name of your DUT is my test, in the
default case the coder adds the TimingControllerPostfix tc to form the timing
controller name my test tc.

16-73

16 HDL Code Generation Pane: Global Settings

16-74

Command-Line Information

Property: OptimizeTimingController
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Timing controller architecture

Specify whether to generate a reset for the timing controller.
Settings

Default: default

resettable

Generate a reset for the timing controller. If you select this option, the Clock inputs
value must be Single.

default
Do not generate a reset for the timing controller.

Command-Line Information
Property: TimingControllerArch
Type: character vector

Value: 'resettable' | 'default’
Default: 'default’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

File Comment Customization

File Comment Customization

Custom File Header Comment
Specify a custom file header comment in the generated HDL code.
Default: '

With Custom File Header Comment, you can enter custom comments to appear as
header in the generated HDL file for your design.

For example, you can specify arguments such as title, author, modified date, and so on.

//

// Title 1 <%Title%>

// Project : <%Project%>
// Author 1 <%Author%>
//

// Revision . $Revision$
// Date Modified : $Date$

//

Command-Line Information
Property: CustomFileHeaderComment
Type: character vector

Default: '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Custom File Footer Comment
Specify a custom file header comment in the generated HDL code.
Default: '’

With Custom File Footer Comment, you can enter custom comments to appear as
footer in the generated HDL file for your design.

For example, you can specify arguments such as revision, generated log file, revision
number, and so on.

16-75

16 HDL Code Generation Pane: Global Settings

//
// XXXXXX
//
// Log

// Revision 1.2 2009/12/14 04:38:51 SXXXXXX
// Initial revision

Command-Line Information
Property: CustomFileFooterComment
Type: character vector

Default: '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-76

Choose Coding Standard and Report Options

Choose Coding Standard and Report Options

This section contains parameters in the Coding standards tab of the HDL Code
Generation > Global Settings pane of the Configuration Parameters dialog box. Use
these parameters to generate HDL code that adheres to the guidelines recommended by
Industry coding standards.

HDL coding standard

Specify whether to enable the Industry coding standard guidelines that the generated
HDL code must conform to.

Settings
Default: None

None

Generate generic synthesizable HDL code. The generated code need not conform with
the Industry standard guidelines.

Industry

Generate synthesizable HDL code that follows the industry standard rules supported
by HDL Coder. When you specify the Industry setting, the code generator enables
the Report options check box and rules that you can customize in the Coding
Standards tab.

When you specify the Industry setting and generate code, HDL Coder generates a
standards compliance report. The report displays errors, warnings, messages, and
lists the corresponding rules. To filter the report such that the passing rules do not
appear, clear the Report options check box.

Command-Line Information
Property: HDLCodingStandard
Type: character vector

Value: 'None' | 'Industry’
Default: 'None'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

16-77

16 HDL Code Generation Pane: Global Settings

16-78

For example, you can enable the Industry standard guidelines compliance for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'HDLCodingStandard', 'Industry')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard', 'Industry')
See Also

* makehdl
+ “HDL Coding Standards” on page 26-4
* HDL Coding Standard Customization Properties

Report options

Specify whether to filter the coding standard report such that the passing rules do not
appear. By default, the report displays pass, errors, warnings, messages, and lists the
corresponding rules.

Settings
Default: Off

|7On

Show only rules with errors or warnings. The code generator filters out messages and
passing rules from the report.

I off
Show all rules in the report including the messages and passing rules.

Dependency

To clear the Report options check box, set the HDL coding standard parameter to
Industry.

Choose Coding Standard and Report Options

Command-Line Information

To set this property:

1

Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
Set the ShowPassingRules property of the HDL coding standard customization
object.

For example, to omit passing rules from the report, enter:

cso.ShowPassingRules.enable = false;

Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.
For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir_ fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

See Also

makehdl

“HDL Coding Standards” on page 26-4
hdlcoder.CodingStandard

HDL Coding Standard Customization

16-79

16 HDL Code Generation Pane: Global Settings

Basic Coding Practices

16-80

These parameters belong to the Basic coding rules section of the Coding standards
tab of the HDL Code Generation > Global Settings pane of the Configuration
Parameters dialog box. Use these parameters to customize basic coding rules that are
specified by the Industry standard guidelines. These rules correspond to naming
conventions that your design uses.

Check for duplicate names

Specify whether to check for duplicate names in the design. This check corresponds to
CGSL-1.A.A.5 of the Industry standard guidelines.

Settings
Default: On
¥ On
Check for duplicate names.

I off
Do not check for duplicate names.

Dependency

To clear the Check for duplicate names check box, set the HDL coding standard
parameter to Industry.

Command-Line Information
To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Set the DetectDuplicateNamesCheck property of the HDL coding standard
customization object.

For example, to disable the check for duplicate names, enter:

cso.DetectDuplicateNamesCheck.enable = false;

Basic Coding Practices

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “Basic Coding Practices” on page 26-10
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check for HDL keywords in design names

Specify whether to check for HDL keywords in design names. This check corresponds to
CGSL-1.A.A.3 of the Industry standard guidelines.

Settings
Default: On
I On
Check for HDL keywords in design names.

I off
Do not check for HDL keywords in design names.

Dependency

To clear the Check for HDL keywords in design names check box, set the HDL
coding standard parameter to Industry.

Command-Line Information
To set this property:
1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

16-81

16 HDL Code Generation Pane: Global Settings

16-82

2 Set the HDLKeywords property of the HDL coding standard customization object.

For example, to disable the check for HDL keywords in design names, enter:

cso.HDLKeywords.enable = false;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

See Also

* makehdl

» “Basic Coding Practices” on page 26-10
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check module, instance, entity name length

Specify whether to check module, instance, and entity name length. This check
corresponds to CGSL-1.A.C.3 of the Industry standard guidelines.

Settings
Default: On

¥ on
Check module, instance, and entity name length.
Minimum
Minimum name length, specified as a positive integer. The default is 2.
Maximum
Maximum name length, specified as a positive integer. The default is 32.

I off
Do not check module, instance, and entity name length.

Basic Coding Practices

Dependency

To clear the Check module, instance, entity name length check box, set the HDL
coding standard parameter to Industry.

Command-Line Information

To set this property:

1

Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

Set the ModuleInstanceEntityNameLength property of the HDL coding standard
customization object.

For example, to enable the check for module, instance, and entity name length, with
5 as the minimum length and 30 as the maximum length, enter:

cso.ModuleInstanceEntityNameLength.enable
cso.ModuleInstanceEntityNameLength.length

true;
[5 30];

Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir_fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

makehdl

“Basic Coding Practices” on page 26-10
hdlcoder.CodingStandard

HDL Coding Standard Customization

Check signal, port, and parameter name length

Specify whether to check signal, port, and parameter name length. This check
corresponds to CGSL-1.A.B.1 of the Industry standard guidelines.

16-83

16 HDL Code Generation Pane: Global Settings

16-84

Settings

Default: On

|7On

Check signal, port, and parameter name length.
Minimum

Minimum name length, specified as a positive integer. The default is 2.
Maximum

Maximum name length, specified as a positive integer. The default is 40.

I off

Do not check signal, port, and parameter name length.

Dependency

To clear the Check signal, port, and parameter name length check box, set the HDL
coding standard parameter to Industry.

Command-Line Information

To set this property:

1

Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

Set the SignalPortParamNameLength property of the HDL coding standard
customization object.

For example, to enable the check for signal, port, and parameter name length, with 5
as the minimum length and 30 as the maximum length, enter:

cso.SignalPortParamNameLength.enable = true;
cso.SignalPortParamNameLength.length [5 30];

Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

Basic Coding Practices

See Also

* makehdl

» “Basic Coding Practices” on page 26-10
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

16-85

16 HDL Code Generation Pane: Global Settings

RTL Description Rules for clock enables and resets

16-86

These parameters belong to the RTL description rules section of the Coding standards
tab of the HDL Code Generation > Global Settings pane of the Configuration
Parameters dialog box. Use these parameters to customize RTL description rules for clock
enable and reset signals that are specified by the Industry standard guidelines.

Check for clock enable signals

Specify whether to check for clock enable signals in the generated code. This check
corresponds to CGSL-2.C.C.4 of the Industry standard guidelines.

Settings
Default: Off

|7On

Minimize clock enables during code generation, then check for clock enable signals in
the generated code.

I off
Do not check for clock enable signals in the generated code.

Dependency

To select the Check for clock enable signals check box, set the HDL coding standard
parameter to Industry.

Command-Line Information
To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Setthe MinimizeClockEnableCheck property of the HDL coding standard
customization object.

For example, to minimize clock enables and check for clock enable signals in the
generated code, enter:

RTL Description Rules for clock enables and resets

cso.MinimizeClockEnableCheck.enable = true;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_ fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard', 'Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “RTL Description Techniques” on page 26-25
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Detect usage of reset signals

Specify whether to check for reset signals in the generated code. This check corresponds
to CGSL-2.C.C.5 of the Industry standard guidelines.

Settings
Default: Off

|7On

Minimize reset signals in the generated code, then check for reset signals after code
generation.

I off
Do not check for reset signals in the generated code.

Dependency

To select the Detect usage of reset signals check box, set the HDL coding standard
parameter to Industry.

Command-Line Information

To set this property:

16-87

16 HDL Code Generation Pane: Global Settings

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Set the RemoveResetCheck property of the HDL coding standard customization
object.

For example, to check for reset signals, enter:

cso.RemoveResetCheck.enable = true;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_ fir, enter:

makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “RTL Description Techniques” on page 26-25
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Detect usage of asynchronous reset signals

Specify whether to check for asynchronous reset signals in the generated code. This
check corresponds to CGSL-2.C.C.6 of the Industry standard guidelines.

Settings
Default: Off

V' on
Check for asynchronous reset signals in the generated code.

I off

Do not check for asynchronous reset signals in the generated code.

16-88

RTL Description Rules for clock enables and resets

Dependency

To clear the Detect usage of asynchronous reset signals check box, set the HDL
coding standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.
cso = hdlcoder.CodingStandard('Industry');

2 Setthe AsynchronousResetCheck property of the HDL coding standard
customization object.
For example, to minimize use of variables, enter:
cso.AsynchronousResetCheck.enable = true;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.
For example, if your DUT is sfir fixed/symmetric fir, enter:
makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard', 'Industry', ...

'"HDLCodingStandardCustomizations',cso);
See Also
* makehdl

“RTL Description Techniques” on page 26-25
hdlcoder.CodingStandard
HDL Coding Standard Customization

16-89

16 HDL Code Generation Pane: Global Settings

RTL Description Rules for Conditionals

16-90

These parameters belong to the RTL description rules section of the Coding standards
tab of the HDL Code Generation > Global Settings pane of the Configuration
Parameters dialog box. Use these parameters to customize RTL description rules for
conditional and if-else statements that are specified by the Industry standard guidelines.

Check for conditional statements in processes

Specify whether to check for length of conditional statements that are described
separately within a process. This check corresponds to CGSL-2.EB.1 of the Industry
standard guidelines.

Settings
Default: On
¥ On
Check for length of conditional statements in a process. The default length is 1.

I off
Do not check for length of conditional statements in a process.

Dependency

To clear the Check for conditional statements in processes check box, set the HDL
coding standard parameter to Industry.

Command-Line Information
To set this property:
1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Setthe ConditionalRegionCheck property of the HDL coding standard
customization object.

For example, to check for four conditional statements in a process, enter:

RTL Description Rules for Conditionals

cso.ConditionalRegionCheck.enable true;
cso.ConditionalRegionCheck.length = 4;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard', 'Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “RTL Description Techniques” on page 26-25
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check if-else statement chain length

Specify whether to check if-else statement chain length. This check corresponds to
CGSL-2.G.C.1c of the Industry standard guidelines.

Settings
Default: On
v On
Check if-else statement chain length.

Length

Maximum if-else statement chain length, specified as a positive integer. The
default is 7.

I off
Do not check if-else statement chain length.

Dependency

To clear the Check if-else statement chain length check box, set the HDL coding
standard parameter to Industry.

16-91

16 HDL Code Generation Pane: Global Settings

Command-Line Information

To set this property:
1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
2 Setthe IfTElseChain property of the HDL coding standard customization object.

For example, to check for if-else statement chains with length greater than 5, enter:

cso.IfElseChain.enable true;
cso.IfElseChain.length 5;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “RTL Description Techniques” on page 26-25
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check if-else statement nesting depth

Specify whether to check if-else statement nesting depth. This check corresponds to
CGSL-2.G.C.1a of the Industry standard guidelines.

Settings
Default: On

¥ on
Check if-else statement nesting depth.

16-92

RTL Description Rules for Conditionals

Depth

Maximum if-else statement nesting depth, specified as a positive integer. The
default is 3.

I off

Do not check if-else statement nesting depth.

Dependency

To clear the Check if-else statement nesting depth check box, set the HDL coding
standard parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.
cso = hdlcoder.CodingStandard('Industry');

2 Setthe ITElseNesting property of the HDL coding standard customization object.
For example, to enable the check for if-else statement nesting depth with a maximum
depth of 5, enter:
cso.IfElseNesting.enable = true;
cso.IfElseNesting.depth = 5;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:
makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);
See Also
* makehdl

“RTL Description Techniques” on page 26-25
hdlcoder.CodingStandard
HDL Coding Standard Customization

16-93

16 HDL Code Generation Pane: Global Settings

Other RTL Description Rules

16-94

These parameters belong to the RTL description rules section of the Coding standards
tab of the HDL Code Generation > Global Settings pane of the Configuration
Parameters dialog box. Use these parameters to customize RTL description rules of the
Industry standard guidelines. These rules pertain to checking the multiplier width,
whether to minimize use of variables, and initial statements to provide initial value for
RAMs.

Minimize use of variables

Specify whether to minimize use of variables. This check corresponds to CGSL-2.G of the
Industry standard guidelines.

Settings
Default: Off
v On
Minimize use of variables.

I off
Do not minimize use of variables.

Dependency

To select the Minimize use of variables check box, set the HDL coding standard
parameter to Industry.

Command-Line Information
To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Setthe MinimizeVariableUsage property of the HDL coding standard
customization object.

For example, to minimize use of variables, enter:

Other RTL Description Rules

cso.MinimizeVariableUsage.enable = true;

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric fir, enter:

makehdl('sfir fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'"HDLCodingStandardCustomizations',cso);

See Also

* makehdl

* “RTL Description Techniques” on page 26-25
* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check for initial statements that set RAM initial values

Specify whether to check for initial statements that set RAM initial values. This check
corresponds to CGSL-2.C.D.1 of the Industry standard guidelines.

Settings
Default: On
¥ On
Check for initial statements that set RAM initial values

™ off
Do not check for initial statements that set RAM initial values.

Dependency

To clear the Check for initial statements that set RAM initial values check box, set
the HDL coding standard parameter to Industry.

Command-Line Information

To set this property:

16-95

16 HDL Code Generation Pane: Global Settings

16-96

Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

Set the InitialStatements property of the HDL coding standard customization
object.

For example, to disable the check for initial statements that set RAM initial values,
enter:

cso.InitialStatements.enable = false;

Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.
For example, if your DUT is sfir fixed/symmetric_ fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

See Also

makehdl

“RTL Description Techniques” on page 26-25
hdlcoder.CodingStandard

HDL Coding Standard Customization

Check multiplier width

Specify whether to check multiplier bit width. This check corresponds to CGSL-2.J.E5 of
the Industry standard guidelines.

Settings
Default: On

IFOn

Check multiplier width.
Maximum

Maximum multiplier bit width, specified as a positive integer. The default is 16.

Other RTL Description Rules

™ off

Do not check multiplier width.

Dependency

To clear the Check multiplier width check box, set the HDL coding standard
parameter to Industry.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.
cso = hdlcoder.CodingStandard('Industry');

2 Setthe MultiplierBitWidth property of the HDL coding standard customization
object.
For example, to enable the check for multiplier width with a maximum bit width of
32, enter:
cso.MultiplierBitWidth.enable = true;
cso.MultiplierBitWidth.width = 32;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.
For example, if your DUT is sfir fixed/symmetric fir, enter:
makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry', ...

'HDLCodingStandardCustomizations',cso);
See Also
* makehdl

“RTL Description Techniques” on page 26-25
hdlcoder.CodingStandard
HDL Coding Standard Customization

16-97

16 HDL Code Generation Pane: Global Settings

RTL Design Rules

16-98

This section contains parameters in the RTL design rules section of the Coding
standards tab of the HDL Code Generation > Global Settings pane of the
Configuration Parameters dialog box. Use these parameters to check for presence of non-
integer constants and the line wrap length in the generated HDL code.

Check for non-integer constants

Specify whether to check for non-integer constants. This check corresponds to
CGSL-3.B.D.1 of the Industry standard guidelines.

Settings
Default: On
V' On
Check for non-integer constants.

I off
Do not check for non-integer constants.

Dependency

To clear the Check for non-integer constants check box, set the HDL coding
standard parameter to Industry.

Command-Line Information
To set this property:

1 Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');

2 Setthe NonIntegerTypes property of the HDL coding standard customization
object.

For example, to disable the check for non-integer constants, enter:

cso.NonIntegerTypes.enable = false;

RTL Design Rules

3 Setthe HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_ fir, enter:

makehdl('sfir_fixed/symmetric fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

See Also

* makehdl

+ “RTL Design Rules” on page 16-98

* hdlcoder.CodingStandard

* HDL Coding Standard Customization

Check line length

Specify whether to check line lengths in the generated HDL code. This check corresponds
to CGSL-3.A.D.5 of the Industry standard guidelines.

Settings
Default: On
v On
Check line length.

Maximum

Maximum number of characters in a line, specified as a positive integer. The
default is 110.

I~ off
Do not check line length.

Dependency

To clear the Check line length check box, set the HDL coding standard parameter to
Industry.

Command-Line Information

To set this property:

16-99

16 HDL Code Generation Pane: Global Settings

16-100

Create an HDL coding standard customization object.

cso = hdlcoder.CodingStandard('Industry');
Set the LinelLength property of the HDL coding standard customization object.

For example, to enable the check line length with a maximum character length of 80,
enter:

cso.HDLKeywordsLinelLength.enable = true;
cso.HDLKeywordsLinelLength.length = 80;

Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir fixed/symmetric_ fir, enter:

makehdl('sfir_ fixed/symmetric_ fir', 'HDLCodingStandard','Industry', ...
'HDLCodingStandardCustomizations',cso);

See Also

makehdl

“RTL Design Rules” on page 16-98
hdlcoder.CodingStandard

HDL Coding Standard Customization

Diagnostics for Optimizations

Diagnostics for Optimizations

This section contains parameters in the Diagnostics tab of the HDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Use these parameters
to highlight blocks and feedback loops that inhibit delay balancing, distributed pipelining,
clock-rate pipelining, and other optimizations.

Highlight feedback loops inhibiting delay balancing and
optimizations
Feedback loops in your Simulink model can inhibit delay balancing and optimizations

such as resource sharing and streaming. Use this setting to specify whether to generate a
script that highlights feedback loops.

When you generate the feedback loop highlighting script, HDL Coder generates another
script that clears the highlighting of feedback loops in your model. To turn off
highlighting, click the link to the clearhighlighting script.

Settings
Default: On

|7On

Generate a MATLAB script that highlights feedback loops in the original model and
the generated model. When you run the script, the code generator highlights the
various feedback loops using different colors. The highlighting script is saved in the
same target folder as the generated HDL code.

It is recommended to leave this setting enabled so that you can identify the feedback
loops and further optimize your design.

I off
Do not generate a script to highlight feedback loops.

Command-Line Information
Property: HighlightFeedbackLoops
Type: character vector

Value: 'on' | 'off'

Default: 'on'

16-101

16 HDL Code Generation Pane: Global Settings

16-102

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehdl.

hdlset param('sfir fixed', 'HighlightFeedbackLoops', 'off"')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.
makehdl('sfir fixed/symmetric fir', 'HighlightFeedbackLoops"', 'off')
See Also

* makehdl

* “Find Feedback Loops” on page 24-35

* “Delay Balancing” on page 24-30

* “Generated Model and Validation Model” on page 23-2

Highlight blocks inhibiting clock-rate pipelining

Certain blocks in your Simulink model can inhibit clock-rate pipelining and therefore
delimit clock-rate pipelining regions. Use this setting to specify whether to generate a
script to highlight the blocks.

When you generate the clock-rate pipelining highlighting script, HDL Coder generates
another script that clears the highlighting. To turn off highlighting, click the link to the
clearhighlighting script.

Settings
Default: On

IFOn

Generate a MATLAB script that highlights blocks in the original model and the
generated model that are inhibiting clock-rate pipelining.

Diagnostics for Optimizations

It is recommended to leave this setting enabled so that you can identify the blocks
that delimit the clock-rate pipelining regions and further optimize your design.
I off
Do not generate a script to highlight blocks that are inhibiting clock-rate pipelining.
Command-Line Information
Property: HighlightClockRatePipeliningDiagnostic
Type: character vector

Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'HighlightClockRatePipeliningDiagnostic','off")
makehdl('sfir_ fixed/symmetric fir"')

* Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_fir', 'HighlightClockRatePipeliningDiagnostic', 'off")
See Also

* makehdl

* “Clock Rate Pipelining” on page 14-15

* “Find Feedback Loops” on page 24-35

* “Generated Model and Validation Model” on page 23-2

Highlight blocks inhibiting distributed pipelining

Certain blocks in your Simulink model can act as barriers for the distributed pipelining
optimization. Use this setting to specify whether to generate a script to highlight the
blocks that are inhibiting distributed pipelining.

16-103

16 HDL Code Generation Pane: Global Settings

16-104

When you generate the highlighting script that displays distributed pipelining barriers,
HDL Coder generates another script that clears the highlighting. To turn off highlighting,
click the link to the clearhighlighting script.

Settings
Default: On

¥ on
Generate a MATLAB script that highlights blocks that are inhibiting distributed
pipelining in the original model and the generated model.

It is recommended to leave this setting enabled so that you can identify the blocks
that are barriers for distributed pipelining and further optimize your design.

I off
Do not generate a script to highlight blocks that are inhibiting distributed pipelining.
Command-Line Information
Property: DistributedPipeliningBarriers
Type: character vector

Value: 'on' | 'off'
Default: 'on’

For example, you can specify this property while generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'DistributedPipeliningBarriers','off"')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric fir', 'DistributedPipeliningBarriers','off"')

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* makehdl

Diagnostics for Optimizations

“Distributed Pipelining” on page 14-12
“Find Feedback Loops” on page 24-35
“Generated Model and Validation Model” on page 23-2

16-105

16 HDL Code Generation Pane: Global Settings

Diagnostics for Reals and Black Box Interfaces

16-106

This section contains parameters in the Diagnostics tab of the HDL Code Generation >
Global Settings pane of the Configuration Parameters dialog box. Use these parameters
to check for name conflicts in black box interfaces and for presence of reals in the
generated HDL code.

Check for name conflicts in black box interfaces

Specify whether to check for duplicate module or entity names in generated HDL code
and black box interface HDL code.

Settings
Default: Warning

None

Do not check for black box subsystems that have the same HDL module name as a
generated HDL module name.

Warning
Check for black box subsystems that have the same HDL module name as a generated
HDL module name. Display a warning if matching names are found.

Error

Check for black box subsystems that have the same HDL module name as a generated
HDL module name. Display an error if matching names are found.

Command-Line Information

Property: DetectBlackBoxNameCollision
Type: character vector

Value: 'None' | '"Warning' | 'Error'
Default: 'Warning'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_fir subsystem inside the sfir fixed model using either of these methods.

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

Diagnostics for Reals and Black Box Interfaces

hdlset param('sfir fixed', 'DetectBlackBoxNameCollision', 'None')
makehdl('sfir fixed/symmetric fir')

* Pass the property as an argument to the makehdl function.

makehdl('sfir_fixed/symmetric_ fir', 'DetectBlackBoxNameCollision', 'None')
See Also

* makehdl
* “Generate Black Box Interface for Subsystem” on page 27-4

Check for presence of reals in generated HDL code
Specify whether to check for reals in the generated HDL code.

Settings

Default: Error

None
Do not check for reals in the generated HDL code.
Warning

Checks and warn any presence of real data types in the generated HDL code. Real
data types in the generated HDL code are not synthesizable on target FPGA devices.

Error

Checks and generates an error if there are any real data types in the generated HDL
code. If you are generating code for simulation purposes and not for synthesizing your
design, you can change this setting to Warning or None. To generate synthesizable
HDL code, set the Floating Point IP Library as Native Floating Point.

Command-Line Information

Property: TreatRealsInGeneratedCodeAs
Type: character vector

Value: 'None' | '"Warning' | 'Error'
Default: 'Error'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can specify this property while generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

16-107

16 HDL Code Generation Pane: Global Settings

* Use hdlset param to set the parameter on the model. Then generate HDL code
using makehd1.

hdlset param('sfir fixed', 'TreatRealsInGeneratedCodeAs', 'Warning')
makehdl('sfir fixed/symmetric fir"')

* Pass the property as an argument to the makehdl function.

makehdl('sfir fixed/symmetric_ fir', 'TreatRealsInGeneratedCodeAs', 'Warning')
See Also

* makehdl
* “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67

16-108

17

HDL Code Generation Pane: Report

* “Report Overview” on page 17-2

* “Generate traceability report” on page 17-3

* “Traceability style” on page 17-5

* “Generate model Web view” on page 17-7

* “Generate resource utilization report” on page 17-9

* “Generate high-level timing critical path report” on page 17-11
* “Generate optimization report” on page 17-13

17 HDL Code Generation Pane: Report

Report Overview

When you use the parameters in the Report pane, HDL Coder creates a Code Generation
Report when generating HDL code for your model or Subsystem. The Code Generation
Report contains a Summary, a Code Interface Report, and one or more of these
reports.

* A traceability report that you can use to trace from the generated HDL code to the
model and from the model to HDL code.

* Aresource utilization report that contains the number of hardware resources used in
the HDL code.

* An optimization report that displays the result of optimizations such as streaming,
sharing, distributed pipelining, and floating-point target-specific information that was
implemented in the generated code.

» A web view of the model that you can use to navigate between the generate code and
your Simulink model.

See Also

* “Create and Use Code Generation Reports” on page 25-2
* makehdl

17-2

Generate traceability report

Generate traceability report

Enable or disable generation of an HTML code generation report with hyperlinks from
code to model and model to code. The report provides line-level traceability for each
block in your Simulink model. When you click the hyperlink beside a certain line of code
in the report, HDL Coder highlights the corresponding block in your Simulink model.
When you select a certain block in your model, the report highlights all lines of code
corresponding to that block.

Settings
Default: Off

|7On

Create and display a traceability report section in the HTML code generation report.
To generate the report, after you enable this setting, click the Generate button. The
code generation report contains a summary section and a code interface report along
with the traceability report.

I off
Do not create an HTML code generation report.

Dependency

When you select this check box, you can select the Traceability style. By default, the
Traceability style is Line Level.

Command-Line Information
Property: Traceability

Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can generate a traceability report when generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

17-3

17 HDL Code Generation Pane: Report

* Passinthe Traceability property as an argument to makehdl.
makehdl('sfir fixed/symmetric fir', 'Traceability','on')
* Enable the Traceability property using hdlset param and then use makehdl.

hdlset param('sfir fixed', 'Traceability','on')
makehdl('sfir fixed/symmetric fir')

You can use the RequirementComments property to generate hyperlinked requirements
comments within the HTML code generation report. The requirements comments link to
the corresponding requirements documents for your model.

See Also

* “Create and Use Code Generation Reports” on page 25-2

* “Navigate Between Simulink Model and HDL Code by Using Traceability” on page 25-
5

* makehdl

17-4

Traceability style

Traceability style

You can use Traceability style to specify whether you want to generate line-level or
comment-based hyperlinks in the traceability report.

Settings
Default: Line Level

The options are:

Line Level

By default, HDL Coder generates a line-level traceability report that contains
hyperlinks from each line of HDL code to the corresponding block in your Simulink
model. The traceability report that is generated by using this style does not contain
hyperlinked comments above the HDL code corresponding to a certain block. When
you select a certain block and navigate to the HDL code, the code generator
highlights all lines of code corresponding to that block.

Comment Based

If you specify generation of a comment-based traceability report, the report contains
hyperlinked comments above a block of HDL code. The comments contain a
traceability tag that contains a searchable pattern of the format <system>/
blockname. <system> is the root model or a Subsystem inside the model, and
blockname is the name of the block inside that model or Subsystem.

For example, if you have a model, foo, that has a Subsystem, outer, and a nested
Subsystem, Inner, then the <System> tag is:

¢ <Root>: foo
* <S1>: foo/outer

* <S2>: foo/outer/inner

Dependency

To specify this setting, select the Generate traceability report check box.

17-5

17 HDL Code Generation Pane: Report

Command-Line Information
Property: TraceabilityStyle

Type: character vector

Value: 'LineLevel' | 'CommentBased'
Default: 'LinelLevel!’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, when you generate a traceability report for the symmetric fir subsystem
inside the sfir fixed model, specify the TraceabilityStyle by using either of these
methods:

* Passinthe TraceabilityStyle property as an argument to makehd1.
makehdl('sfir fixed/symmetric fir', 'Traceability','on’',...
'TraceabilityStyle', 'CommentBased"')
* Enable the TraceabilityStyle property using hdlset param, and then use
makehd1l.

hdlset param('sfir fixed', 'Traceability','on')
hdlset param(gcs, 'TraceabilityStyle', 'CommentBased')
makehdl('sfir fixed/symmetric fir')

See Also

* “Create and Use Code Generation Reports” on page 25-2

* “Navigate Between Simulink Model and HDL Code by Using Traceability” on page 25-
5

* makehdl

17-6

Generate model Web view

Generate model Web view

Include the model Web view in the HDL Code Generation report to navigate between the
code and model within the same window. With a model Web view, you can click a link in
the generated code to highlight the corresponding block in the model. Using this
capability, you can review, analyze, and debug the generated HDL code. You can share
your model and generated code outside of the MATLAB environment.

Settings

Default: Off

Y On

Include model Web view in the Code Generation report. To generate the report, after
you enable this setting, click the Generate button. The code generation report
contains a summary section and a code interface report along with the model web
view.

Off

Do not include model Web view in the Code Generation report.

Dependencies

To include a Web view (Simulink Report Generator) of the model in the Code Generation
report, you must have Simulink Report Generator™ installed.

Command-Line Information
Parameter: HDLGenerateWebview
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can generate a model web view when generating HDL code for the
symmetric_ fir subsystem inside the sfir fixed model using either of these methods.

17-7

17 HDL Code Generation Pane: Report

* Passin the HDLGenerateWebview property as an argument to makehd1.

makehdl('sfir fixed/symmetric_ fir', 'HDLGenerateWebview', 'on')

* Enable the HDLGenerateWebview property using hdlset param and then use
makehdl.

hdlset param('sfir fixed', 'HDLGenerateWebview', 'on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Create and Use Code Generation Reports” on page 25-2
* “Web View of Model in Code Generation Report” on page 25-13
* makehdl

17-8

Generate resource utilization report

Generate resource utilization report

Enable or disable generation of an HTML resource utilization report. The report contains
a summary and detailed information about the number of hardware resources, such as
multipliers, adders, and registers that are used in the generated HDL code. If you have
floating-point data types in your model, you can generate HDL code with native floating
point support or map your design to Intel or Xilinx FPGA floating-point libraries. The
resource utilization report displays a target-specific report corresponding to FPGA
floating-point library mapping and a resource report corresponding to HDL code in native
floating-point mode.

Settings
Default: Off

|7On

Create and display an HTML resource utilization report. To generate the report, after
you enable this setting, click the Generate button. The code generation report
contains a summary section and a code interface report along with the resource
utilization report.

I off
Do not create an HTML resource utilization report.

Command-Line Information
Property: ResourceReport

Type: character vector

Value: 'on' | 'off'

Default: 'of '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can generate a resource utilization report when generating HDL code
for the symmetric fir subsystem inside the sfir fixed model using either of these
methods.

* Passinthe Traceability property as an argument to makehd1l.

17-9

17 HDL Code Generation Pane: Report

makehdl('sfir fixed/symmetric fir', 'ResourceReport','on')
* Enable the Traceability property using hdlset param and then use makehdl.

hdlset param('sfir fixed', 'ResourceReport','on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Create and Use Code Generation Reports” on page 25-2
* makehdl

17-10

Generate high-level timing critical path report

Generate high-level timing critical path report

Specify whether to generate a highlighting script that shows the estimated critical path.
The report displays the critical path delay and generates a highlighting script as a link
that you can click to highlight the estimated critical path in the generated model. If your
design contains blocks without timing information, the report displays the link to another
highlighting script that is generated to highlight those blocks.

Settings
Default: Off

|7On

Generate a highlighting script that shows the estimated critical path. To generate the
report, after you enable this setting, click the Generate button. The code generation
report contains a summary section and a code interface report along with the critical
path estimation report.

To estimate the critical path for single-precision floating-point models, use the
Native Floating Point mode. In the Configuration Parameters dialog box, on the
HDL Code Generation > Global Settings > Floating Point Target tab, set
Library to Native Floating Point

I off
Do not calculate the estimated critical path.

Command-Line Information
Property: CriticalPathEstimation
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can generate a critical path estimation report when generating HDL

code for the symmetric fir subsystem inside the sfir fixed model using either of
these methods.

17-11

17 HDL Code Generation Pane: Report

* Passinthe CriticalPathEstimation property as an argument to makehdl.

makehdl('sfir fixed/symmetric fir', 'CriticalPathEstimation','on')
* Enable the CriticalPathEstimation property using hdlset param and then use
makehdl.

hdlset param('sfir fixed', 'CriticalPathEstimation','on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Create and Use Code Generation Reports” on page 25-2

* “Critical Path Estimation Without Running Synthesis” on page 24-70

* “Getting Started with HDL Coder Native Floating-Point Support” on page 10-67
* makehdl

17-12

Generate optimization report

Generate optimization report

Enable or disable generation of an HTML optimization report. The report contains
information about the results of distributed pipelining, streaming, sharing, delay
balancing, and adaptive pipelining optimizations that are implemented in the generated
code. The report includes hyperlinks back to referenced blocks, subsystems, or validation
models. If you have floating-point data types in your model, you can generate HDL code
with native floating point support or map your design to Intel or Xilinx FPGA floating-
point libraries. When you map to FPGA floating-point libraries, the optimization report
displays a target code generation section that displays the target device summary and a
link to the generated model.

Settings
Default: Off

|7On

Create and display an HTML optimization report. To generate the report, after you
enable this setting, click the Generate button. The code generation report contains a
summary section and a code interface report along with the optimization report.

I off
Do not create an HTML optimization report.

Command-Line Information
Property: OptimizationReport
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

For example, you can generate an optimization report when generating HDL code for the
symmetric fir subsystem inside the sfir fixed model using either of these methods.

* Passin the OptimizationReport property as an argument to makehdl.

makehdl('sfir fixed/symmetric fir', 'OptimizationReport','on')

17-13

17 HDL Code Generation Pane: Report

* Enable the OptimizationReport property using hdlset param and then use
makehdl.

hdlset param('sfir fixed', 'OptimizationReport','on')
makehdl('sfir fixed/symmetric fir')

See Also

* “Create and Use Code Generation Reports” on page 25-2
* makehdl

17-14

HDL Code Generation Pane: Test
Bench

* “Test Bench Overview” on page 18-2

* “Test Bench Generation Output” on page 18-3

» “Test Bench name, data file, and reference Postfix” on page 18-8
* “Clock Input Signals” on page 18-10

* “Setup and Hold Time” on page 18-13

* “Clock Enable and Reset Input Signals” on page 18-15

» “Test Bench Stimulus and Output” on page 18-19

* “Multi-file test bench” on page 18-23

* “Floating Point Tolerance” on page 18-25

* “Simulation library path” on page 18-27

18 HDL Code Generation Pane: Test Bench

Test Bench Overview

The Test Bench pane lets you set options that determine characteristics of generated
test bench code.

Generate Test Bench Button
The Generate Test Bench button initiates test bench generation for the system selected

in the Generate HDL for menu on the parent HDL Code Generation pane. See also
makehdltb.

18-2

Test Bench Generation Output

Test Bench Generation Output

HDL test bench

Enable or disable HDL test bench generation.
Settings

Default: selected

Y On

Enable generation of HDL test bench code. The code generator creates a HDL test
bench by running a Simulink simulation to capture input vectors and expected output
data for your DUT.

This test bench is the default test bench that HDL Coder generates for your model. If
you have not already generated code for your model, running HDL test bench
generation also generates code for your DUT.

Specify your HDL simulator in the Simulation tool menu. HDL Coder generates
build-and-run scripts for the simulator that you specify.

Off

Suppress generation of HDL test bench code. You can use this option when you use an
alternate test bench.

Dependencies

This check box enables the options in the Configuration section of the Test Bench pane.
Select a Simulation tool to generate scripts to build and run the test bench.

Command-Line Information
Property: GenerateHDLTestBench
Type: character vector

Value: 'on' | 'off'

Default: 'on’

To set this property, use hdlset param or makehdltb. To view the property value, use
hdlget param.

18-3

18 HDL Code Generation Pane: Test Bench

For example, to generate a HDL test bench for the sfir fixed/symmetric fir
Subsystem, pass the DUT as an argument to the makehd1tb function.

makehdltb('sfir fixed/symmetric fir')

Cosimulation model

Enable or disable generation of a model including a HDL Cosimulation block. This option
requires an HDL Verifier license. After you select this check box, specify your Simulation
tool. You can select Mentor Graphics ModelSim or Cadence Incisive® for cosimulation.
Custom script settings are not supported with this test bench.

Settings
Default: not selected

Command-Line Information

Property: GenerateCosimBlock

Type: character vector

Value: 'on' | 'off"'

Default: 'off'

Property: GenerateCosimModel

Type: character vector

Value: 'ModelSim' | 'Incisive' | 'None’
Default: 'ModelSim'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

“Generate a Cosimulation Model” on page 27-40

SystemVerilog DPI test bench

Enable or disable generation of the SystemVerilog DPI test bench. Select your HDL
simulator at Simulation tool. For SystemVerilog DPI test bench you can select Mentor
Graphics ModelSim, Cadence Incisive, SynopsysVCS®, or Xilinx Vivado. Custom script
settings are not supported with this test bench.

When you set this property, the coder generates a direct programming interface (DPI)
component for your entire Simulink model, including your DUT and data sources. Your

18-4

Test Bench Generation Output

entire model must support C code generation with Simulink Coder. The coder generates a
SystemVerilog test bench that compares the output of the DPI component with the output
of the HDL implementation of your DUT. The coder also builds shared libraries and
generates a simulation script for the simulator you select.

Consider using this option if the default HDL test bench takes a long time to generate or
simulate. Generation of a DPI test bench is sometimes faster than the default version
because it does not run a full Simulink simulation to create the test bench data.
Simulation of a DPI test bench with a large data set is faster than the default version
because it does not store the input or expected data in a separate file.

To use this feature, you must have HDL Verifier and Simulink Coder licenses. To run the
SystemVerilog testbench with generated VHDL code, you must have a mixed-language
simulation license for your HDL simulator.

Settings

Default: not selected

Command-Line Information

Property: GenerateSVDPITestBench

Type: character vector

Value: 'ModelSim' | 'Incisive'|'Custom'|'VCS'|'Vivado'

Default: 'ModelSim'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also
GenerateSVDPITestbenchSimulationTool

“Verify HDL Design With Large Data Set Using SystemVerilog DPI Test Bench”

Simulation tool

Simulator where you will run the generated test benches. The tool generates a script to
build and run your HDL code and test bench.

18-5

18 HDL Code Generation Pane: Test Bench

18-6

Settings

* Mentor Graphics ModelSim: This option is the default. HDL Coder generates the
selected types of test benches for use with Mentor Graphics ModelSim.

* Cadence Incisive: The coder generates the selected types of test benches for use
with Cadence Incisive.

* Custom: Selecting this option enables the custom script options on the EDA Tool
Scripts pane.

* VCS: This simulator is supported only for SystemVerilog DPI test bench.
* Vivado: This simulator is supported only for SystemVerilog DPI test bench.

Command-Line Information

For HDL test bench, use the SimulationTool property. For cosimulation, use the
GenerateCosimModel property. For SystemVerilog DPI test bench, use the
GenerateSVDPITestbench property.

Property: SimulationTool

Type: character vector

Value: 'Mentor Graphics ModelSim' | 'Cadence Incisive'|'Custom’
Default: 'Mentor Graphics ModelSim'

Property: GenerateCosimModel

Type: character vector

Value: 'ModelSim' | 'Incisive' |None

Default: 'ModelSim'

Property: GenerateSVDPITestbench

Type: character vector

Value: 'ModelSim' | 'Incisive'|'Custom'|'VCS'|'Vivado'

Default: 'ModelSim'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

SimulationTool

HDL code coverage

Enable or disable HDL code coverage flags in the generated simulator scripts

Test Bench Generation Output

With this option enabled, when you run the HDL simulation, code coverage is collected
for your generated test bench. Specify your HDL simulator in the SimulationTool
property. The coder generates build-and-run scripts for the simulator you specify.

Settings
Default: not selected

Command-Line Information
Property: HDLCodeCoverage
Type: character vector

Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

SimulationTool

18-7

18 HDL Code Generation Pane: Test Bench

Test Bench name, data file, and reference Postfix

18-8

Test bench name postfix

Specify a suffix appended to the test bench name.
Settings

Default: tb

For example, if the name of your DUT is my test, HDL Coder adds the default postfix
_tb to form the name my test tb.

Command-Line Information
Property: TestBenchPostFix
Type: character vector
Default: ' tb'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

TestBenchPostFix

Test bench reference postfix

Specify a character vector to be appended to names of reference signals generated in test
bench code.

Settings
Default: ' ref'

Reference signal data is represented as arrays in the generated test bench code. The
character vector specified by Test bench reference postfix is appended to the
generated signal names.

Command-Line Information
Parameter: TestBenchReferencePostFix

Test Bench name, data file, and reference Postfix

Type: character vector
Default: ' ref'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

TestBenchReferencePostFix

Test bench data file name postfix

Specify suffix added to test bench data file name when generating multi-file test bench.
Settings

Default:' data’

HDL Coder applies the Test bench data file name postfix character vector only when
generating a multi-file test bench (i.e., when Multi-file test bench is selected).

For example, if the name of your DUT is my test, and Test bench name postfix has the
default value tb, the coder adds the postfix data to form the test bench data file name
my test tb data.

Dependency

This parameter is enabled by Multi-file test bench.

Command-Line Information

Property: TestBenchDataPostFix

Type: character vector

Default: ' data'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

TestBenchDataPostFix

18-9

18 HDL Code Generation Pane: Test Bench

Clock Input Signals

Force clock

Specify whether the test bench forces clock input signals.
Settings

Default: On

|7On

The test bench forces the clock input signals. When this option is selected, the clock
high and low time settings control the clock waveform.

I off
A user-defined external source forces the clock input signals.
Dependencies
This property enables the Clock high time and Clock high time options.
Command-Line Information
Property: ForceClock
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ForceClock

Clock high time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals
high (1).

18-10

Clock Input Signals

Settings
Default: 5

The Clock high time and Clock low time properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.
Command-Line Information

Property: ClockHighTime

Type: integer

Value: positive integer

Default: 5

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ClockHighTime

Clock low time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals
low (0).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.

18-11

18 HDL Code Generation Pane: Test Bench

Command-Line Information
Property: ClockLowTime
Type: integer

Value: positive integer
Default: 5

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ClockLowTime

18-12

Setup and Hold Time

Setup and Hold Time

Hold time (ns)

Specify a hold time, in nanoseconds, for input signals and forced reset input signals.
Settings
Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds that reset input signals and input data
are held past the clock rising edge. The hold time is expressed as a positive integer or
double (with a maximum of 6 significant digits after the decimal point).

Tips

* The specified hold time must be less than the clock period (specified by the Clock
high time and Clock low time properties).

» This option applies to reset input signals only if Force reset is selected.

Command-Line Information
Property: HoldTime

Type: integer

Value: positive integer
Default: 2

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

HoldTime

Setup time (ns)
Display setup time for data input signals.
Settings

Default: None

18-13

18 HDL Code Generation Pane: Test Bench

This is a display-only field, showing a value computed as (clock period - HoldTime) in
nanoseconds.

Dependency

The value displayed in this field depends on the clock rate and the values of the Hold
time property.

Command-Line Information

Because this is a display-only field, a corresponding command-line property does not
exist.

See Also

HoldTime

18-14

Clock Enable and Reset Input Signals

Clock Enable and Reset Input Signals

Force clock enable

Specify whether the test bench forces clock enable input signals.
Settings

Default: On

|7On

The test bench forces the clock enable input signals to active-high (1) or active-low
(0), depending on the setting of the clock enable input value.

I off
A user-defined external source forces the clock enable input signals.
Dependencies
This property enables the Clock enable delay (in clock cycles) option.
Command-Line Information
Property: ForceClockEnable
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ForceClockEnable

Clock enable delay (in clock cycles)

Define elapsed time (in clock cycles) between deassertion of reset and assertion of clock
enable.

18-15

18 HDL Code Generation Pane: Test Bench

18-16

Settings
Default: 1

The Clock enable delay (in clock cycles) property defines the number of clock cycles
elapsed between the time the reset signal is deasserted and the time the clock enable
signal is first asserted. In the figure below, the reset signal (active-high) deasserts after 2
clock cycles and the clock enable asserts after a clock enable delay of 1 cycle (the
default).

SLOCK

reset

-4———Resat length -

Cikenable
- delay =
Clock
Enable
Dependency

This parameter is enabled when Force clock enable is selected.
Command-Line Information

Property: TestBenchClockEnableDelay

Type: integer

Default: 1

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

TestBenchClockEnableDelay

Clock Enable and Reset Input Signals

Force reset
Specify whether the test bench forces reset input signals.
Settings
Default: On
V' on
The test bench forces the reset input signals.

I off
A user-defined external source forces the reset input signals.

Tips

If you select this option, you can use the Hold time option to control the timing of a
reset.

Command-Line Information
Property: ForceReset
Type: character vector
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ForceReset

Reset length (in clock cycles)

Define length of time (in clock cycles) during which reset is asserted.
Settings

Default: 2

The Reset length (in clock cycles) property defines the number of clock cycles during
which reset is asserted. Reset length (in clock cycles) must be an integer greater than

18-17

18 HDL Code Generation Pane: Test Bench

or equal to 0. The following figure illustrates the default case, in which the reset signal
(active-high) is asserted for 2 clock cycles.

CLOCK

resef

Reset length

Dependency
This parameter is enabled when Force reset is selected.

Command-Line Information
Property: Resetlength
Type: integer

Default: 2

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

ResetLength

18-18

Test Bench Stimulus and Output

Test Bench Stimulus and Output

Hold input data between samples

Specify how long subrate signal values are held in valid state.
Settings

Default: On

IFOn

Data values for subrate signals are held in a valid state across N base-rate clock
cycles, where N is the number of base-rate clock cycles that elapse per subrate
sample period. (N >= 2.)

I off

Data values for subrate signals are held in a valid state for only one base-rate clock
cycle. For the subsequent base-rate cycles, data is in an unknown state (expressed as
'X") until leading edge of the next subrate sample period.

Tip

In most cases, the default (On) is the best setting for Hold input data between
samples. This setting matches the behavior of a Simulink simulation, in which subrate
signals are held valid through each base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is desirable to
clear Hold input data between samples. In this way you can obtain diagnostic
information about when data is in an invalid (' X"') state.

Command-Line Information

Property: HoldInputDataBetweenSamples
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

18-19

18 HDL Code Generation Pane: Test Bench

See Also

HoldInputDataBetweenSamples

Initialize test bench inputs
Specify initial value driven on test bench inputs before data is asserted to DUT.
Settings
Default: Off
¥ on
Initial value driven on test bench inputsis'0".

I off
Initial value driven on test bench inputs is 'X' (unknown).

Command-Line Information

Property: InitializeTestBenchInputs
Type: character vector

Value: 'on' | 'off'

Default: 'off"'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

InitializeTestBenchInputs

Ignore output data checking (number of samples)
Specify number of samples during which output data checking is suppressed.
Settings

Default: 0

The value must be a positive integer.

18-20

Test Bench Stimulus and Output

When the value of Ignore output data checking (number of samples), N, is greater
than zero, the test bench suppresses output data checking for the first N output samples
after the clock enable output (ce out) is asserted.

When using pipelined block implementations, output data may be in an invalid state for
some number of samples. To avoid spurious test bench errors, determine this number and
set Ignore output data checking (number of samples) accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles. For a
single-rate model, these are equivalent, but they are not equivalent for a multirate model.

You should use Ignore output data checking (number of samples) in cases where
there is a state (register) initial condition in the HDL code that does not match the
Simulink state, including the following specific cases:

* When you set the DistributedPipelining property to 'on' for the MATLAB
Function block (see “Distributed Pipeline Insertion for MATLAB Function Blocks” on
page 29-35)

* When you set the ResetType property to 'None"' for the following blocks:

* commcnvintrlv2/Convolutional Deinterleaver

* commcnvintrlv2/Convolutional Interleaver

* commcnvintrlv2/General Multiplexed Deinterleaver
o commecnvintrlv2/General Multiplexed Interleaver

* dspsigops/Delay

* simulink/Additional Math & Discrete/Additional Discrete/Unit Delay Enabled
* simulink/Commonly Used Blocks/Unit Delay

* simulink/Discrete/Delay

* simulink/Discrete/Memory

* simulink/Discrete/Tapped Delay

* simulink/User-Defined Functions/MATLAB Function
+ sflib/Chart

+ sflib/Truth Table

* When generating a black box interface to existing manually written HDL code

18-21

18 HDL Code Generation Pane: Test Bench

18-22

Command-Line Information
Property: IgnoreDataChecking
Type: integer

Default: 0

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

IgnoreDataChecking

Use file 1/0 to read/write test bench data

Create and use data files for reading and writing test bench input and output data.
Settings
Default: On
v On
Create and use data files for reading and writing test bench input and output data.

I off
Use constants in the test bench for DUT stimulus and reference data.
Command-Line Information
Property: UseFileIOInTestBench
Type: character vector

Value: 'on' | 'off'
Default: 'on’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

UseFilelOInTestBench

Multi-file test bench

Multi-file test bench

Divide generated test bench into helper functions, data, and HDL test bench code files.

Settings
Default: Off

|7On

Write separate files for test bench code, helper functions, and test bench data. The
file names are derived from the name of the DUT, the Test bench name postfix
property, and the Test bench data file name postfix property as follows:

DUTname TestBenchPostfix TestBenchDataPostfix

For example, if the DUT name is symmetric fir, and the target language is VHDL,
the default test bench file names are:

 symmetric_fir tb.vhd: test bench code
+ symmetric fir tb pkg.vhd: helper functions package
« symmetric fir tb data.vhd: data package

If the DUT name is symmetric_ fir and the target language is Verilog, the default
test bench file names are:

+ symmetric fir tb.v: test bench code
 symmetric fir tb pkg.v: helper functions package
+ symmetric fir tb data.v: test bench data

I off

Write a single test bench file containing the HDL test bench code, helper functions,
and test bench data.
Dependency

When this property is selected, Test bench data file name postfix is enabled.

18-23

18 HDL Code Generation Pane: Test Bench

Command-Line Information
Property: MultifileTestBench
Type: character vector

Value: 'on' | 'off'

Default: 'off'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

MultifileTestBench

18-24

Floating Point Tolerance

Floating Point Tolerance

Floating point tolerance check based on

When you map your design to the native floating-point libraries or the floating-point
target libraries, specify the floating-point tolerance check option.

Settings
Default: relative error

Select one of these options from the dropdown menu:

* relative error: This is the default option. When you verify the generated code by
using HDL Testbench, HDL Coder checks for the floating-point tolerance of the native
floating-point library or the floating-point target library that your design mapped to
based on the relative error.

* ulp error: When you verify the generated code by using HDL Testbench, HDL Coder
checks for the floating-point tolerance of the native floating-point library or the
floating-point target library that your design mapped to based on the ULP error.

Command-Line Information
Property: FPToleranceStrategy
Type: character vector

Value: 'relative' | 'ULP'
Default: 'relative’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

FPToleranceStrategy

Tolerance Value

Enter the tolerance value based on the floating-point tolerance check setting that you
specify.

18-25

18 HDL Code Generation Pane: Test Bench

18-26

Settings
Default: 1e-07
The value must be a positive integer or a double data type.

The default tolerance value depends on the floating-point tolerance check setting that you
specify. When you set the Floating point tolerance check based on to:

* relative error, the default is a Tolerance Value of 1e-07. When you use this
floating-point tolerance check setting, specify the tolerance value as a double data
type. You can specify a Tolerance Value, N, that is less than or equal to 1e-07.

* ulp error, the default is a Tolerance Value of 0. When you use this floating-point
tolerance check setting, specify the tolerance value as an integer. You can specify a
Tolerance Value, N, that is greater than or equal to 0.

Command-Line Information
Property: FPToleranceValue
Type: double | integer
Default: 1e-07

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

FPToleranceValue

Simulation library path

Simulation library path

Specify the path to your compiled Altera or Xilinx simulation libraries.

Settings
Default: '’

Specify the path to the compiled Altera or Xilinx simulation libraries. Altera provides the
simulation model files in \quartus\eda\sim_lib folder.

Command-Line Information
Property: SimulationLibPath
Type: character vector

Default: '’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

SimulationLibPath

18-27

HDL Code Generation Pane: EDA
Tool Scripts

* “EDA Tool Scripts Overview” on page 19-2
* “Generate EDA scripts” on page 19-3
* “Compilation Script” on page 19-4
* “Simulation Script” on page 19-8
* “Synthesis Script” on page 19-12
“Lint Script” on page 19-18

19 HDL Code Generation Pane: EDA Tool Scripts

EDA Tool Scripts Overview

The EDA Tool Scripts pane lets you set the options that control generation of script files
for third-party HDL simulation and synthesis tools.

19-2

Generate EDA scripts

Generate EDA scripts

Enable generation of script files for third-party electronic design automation (EDA) tools.
These scripts let you compile and simulate generated HDL code and/or synthesize
generated HDL code.

Settings
Default: On
¥ on

Generation of script files is enabled.

I off
Generation of script files is disabled.

Command-Line Information
Parameter: EDAScriptGeneration
Type: character vector

Value: 'on' | 'off'

Default: 'on'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* EDAScriptGeneration

19-3

19 HDL Code Generation Pane: EDA Tool Scripts

Compilation Script

Compile file postfix

Specify a postfix to append to the DUT or test bench name to form the compilation script
file name.

Settings
Default: compile.do

For example, if the name of the device under test or test bench is my design, HDL Coder
adds the postfix compile.do to form the name my design compile.do.

Command-Line Information
Property: HDLCompileFilePostfix
Type: character vector

Default: ' compile.do'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLCompileFilePostfix

Compile initialization

Format name passed to fprintf to write the Init section of the compilation script.
Settings

Default: v1lib %s\n

The Init phase of the script performs required setup actions, such as creating a design
library or a project file.

The implicit argument, %s, is the contents of the 'VHDLLibraryName' property, which
defaults to'work'. You can override the default Init string ('vlib work\n' by
changing the value of 'VHDLLibraryName'.

19-4

Compilation Script

Command-Line Information
Property: HDLCompileInit
Type: character vector
Default: 'vlib %s\n'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLCompilelInit

Compile command for VHDL

Format name passed to fprintf to write the Cmd section of the compilation script for
VHDL files.

Settings
Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated
HDL file. On each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module. To omit the
flags, set SimulatorFlags to ' ' (the default).

Command-Line Information
Property: HDLCompileVHDLCmd
Type: character vector

Default: 'vcom %s %s\n'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLCompileVHDLCmd

19-5

19 HDL Code Generation Pane: EDA Tool Scripts

19-6

Compile command for Verilog

Format name passed to fprintf to write the Cmd section of the compilation script for
Verilog files.

Settings
Default: viog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated
HDL file. On each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module. To omit the
flags, set SimulatorFlags property to ' ' (the default).

Command-Line Information
Property: HDLCompileVerilogCmd
Type: character vector

Default: 'viog %s %s\n'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLCompileVerilogCmd

Compile termination

Format name passed to fprintf to write the termination portion of the compilation
script.

Settings
Default: empty character vector

The termination phase (Term) is the final execution phase of the script. One application of
this phase is to execute a simulation of HDL code that was compiled in the Cmd phase.
The Term phase does not take arguments.

Compilation Script

Command-Line Information
Property: HDLCompileTerm
Type: character vector
Default: '’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLCompileTerm

19-7

19 HDL Code Generation Pane: EDA Tool Scripts

Simulation Script

19-8

Simulation file postfix

Specify a postfix to append to the DUT or test bench name to form the simulation script
file name.

Settings
Default: sim.do

For example, if the name of the device under test or test bench is my design, HDL Coder
adds the postfix sim.do to form the name my design sim.do.

Command-Line Information
Property: HDLSimFilePostfix
Type: character vector

Default: ' sim.do'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSimFilePostfix

Simulation initialization

Format name passed to fprintf to write the initialization section of the simulation
script.

Settings
Default: The default is
['onbreak resume\nonerror resume\n']

The Init phase of the script performs required setup actions, such as creating a design
library or a project file.

Simulation Script

Command-Line Information

Property: HDLSimInit

Type: character vector

Default: ['onbreak resume\nonerror resume\n']

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSimInit

Simulation command

Format name passed to fprintf to write the simulation command.
Settings

Default: vsim -novopt %s.%s\n

If your target language is VHDL, the first implicit argument is the value of VHDL library
name. If your target language is Verilog, the first implicit argument is 'work".

The second implicit argument is the top-level module or entity name.
Command-Line Information

Property: HDLSimCmd

Type: character vector

Default: 'vsim -novopt %s.%s\n'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
¢ HDLSimCmd

19-9

19 HDL Code Generation Pane: EDA Tool Scripts

19-10

Simulation waveform viewing command

Specify the waveform viewing command written to simulation script.
Settings

Default: add wave sim:%s\n

The implicit argument, %s, adds the signal paths for the DUT top-level input, output, and
output reference signals.

Command-Line Information
Property: HDLSimViewWaveCmd
Type: character vector

Default: 'add wave sim:%s\n'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSimViewWaveCmd

Simulation termination

Format name passed to fprintf to write the termination portion of the simulation script.
Settings

Default: run -all\n

The termination phase (Term) is the final execution phase of the script. One application of
this phase is to execute a simulation of HDL code that was compiled in the Cmd phase.
The Term phase does not take arguments.

Command-Line Information
Property: HDLSimTerm
Type: character vector
Default: 'run -all\n'

Simulation Script

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSimTerm

Simulator flags

Specify simulator flags to apply to generated compilation scripts.
Settings
Default: ' ' (no simulator flags)

Specify simulator flags to apply to generated compilation scripts as a character vector.
The simulator flags are specific to your application and the simulator you are using. For
example, if you must use the 1076-1993 VHDL compiler, specify the flag -93.

The flags you specify with this option are added to the compilation command in generated
compilation scripts. The simulation command is specified by the HDLCompileVHDLCmd or
HDLCompileVerilogCmd properties.

Command-Line Information
Property: SimulatorFlags
Type: character vector
Default: '’

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* SimulatorFlags
* HDLCompileVerilogCmd
* HDLCompileVHDLCmd

19-11

19 HDL Code Generation Pane: EDA Tool Scripts

Synthesis Script

19-12

Choose synthesis tool

Enable or disable generation of synthesis scripts, and select the synthesis tool for which
HDL Coder generates scripts.

Settings
Default: None

None

When you select None, HDL Coder does not generate a synthesis script. The coder
clears and disables the fields in the Synthesis script pane.

Xilinx ISE
Generate a synthesis script for Xilinx ISE. When you select this option, the coder:

* Enables the fields in the Synthesis script pane.
* Sets Synthesis file postfixto ise.tcl
+ Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.
Microsemi Libero
Generate a synthesis script for Microsemi Libero. When you select this option, the
coder:
* Enables the fields in the Synthesis script pane.
* Sets Synthesis file postfix to libero.tcl
+ Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.
Mentor Graphics Precision
Generate a synthesis script for Mentor Graphics Precision. When you select this
option, the coder:
* Enables the fields in the Synthesis script pane.
* Sets Synthesis file postfixto precision.tcl

Synthesis Script

Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.

Altera Quartus II

Generate a synthesis script for Altera Quartus II. When you select this option, the
coder:

Enables the fields in the Synthesis script pane.
Sets Synthesis file postfix to quartus.tcl

Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.

Synopsys Synplify Pro

Generate a synthesis script for Synopsys Synplify Pro. When you select this option,
the coder:

Enables the fields in the Synthesis script pane.
Sets Synthesis file postfix to _synplify.tcl

Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.

Xilinx Vivado

Generate a synthesis script for Xilinx Vivado. When you select this option, the coder:

Enables the fields in the Synthesis script pane.
Sets Synthesis file postfix to vivado.tcl

Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.

Custom

Generate a custom synthesis script. When you select this option, the coder:

Enables the fields in the Synthesis script pane.
Sets Synthesis file postfix to custom.tcl

Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with example TCL script code.

19-13

19 HDL Code Generation Pane: EDA Tool Scripts

19-14

Command-Line Information

Property: HDLSynthTool

Type: character vector

Value: 'None' | "ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Vivado' | 'Custom’

Default: 'None'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

HDLSynthTool

Synthesis file postfix

Specify a postfix to append to file name for generated synthesis scripts.
Settings

Default: None.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the
postfix for generated synthesis file names to one of the following:

_ise.tcl

_libero.tcl

_precision.tcl

_quartus.tcl

_synplify.tcl

_vivado.tcl

_custom.tcl

For example, if the DUT name is my designand the choice of synthesis tool is Synopsys
Synplify Pro, HDL Coder adds the postfix synplify.tcl to form the name
my design synplify.tcl.

Command-Line Information
Property: HDLSynthFilePostfix
Type: character vector

Default: none

Synthesis Script

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSynthFilePostfix

Synthesis initialization

Format name passed to fprintf to write the initialization section of the synthesis script.
Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the
Synthesis initialization string. The content of the string is specific to the selected
synthesis tool.

The default is a synthesis project creation command passed as a format string to
fprintf to write the Init section of the synthesis script. The implicit argument, %s, is

the top-level module or entity name.

Command-Line Information
Property: HDLSynthInit
Type: character vector
Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
 HDLSynthInit

Synthesis command

Format name passed to fprintf to write the synthesis command.

19-15

19 HDL Code Generation Pane: EDA Tool Scripts

19-16

Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the
Synthesis command string. The content of the string is specific to the selected synthesis

tool.

The default is a format string passed to fprintf to write the Cmd section of the synthesis
script. The implicit argument, %s, is the filename of the entity or module.

Command-Line Information
Property: HDLSynthCmd
Type: character vector
Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSynthCmd

Synthesis termination

Specify a format name that is passed to fprintf to write the termination portion of the
synthesis script.

Settings

Default: none

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the
Synthesis termination string. The content of the string is specific to the selected

synthesis tool.

The default is a format name passed to fprintf to write the Term section of the
synthesis script. The termination string does not take arguments.

Synthesis Script

Command-Line Information
Property: HDLSynthTerm
Type: character vector
Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 30-8
* HDLSynthTerm

Additional files to add to synthesis project
Include additional HDL or constraint files in synthesis project.
Settings

Default: ' ' (no files added)

Additional project files, such as HDL source files (.v, .vhd) or constraint files (.ucf),
that you want to include in your synthesis project, specified as a character vector.
Separate file names with a semicolon (;).

You cannot use this setting to include Tcl files. To specify synthesis project Tcl files, use
the AdditionalProjectCreationTclFiles property of the
hdlcoder.WorkflowConfig object.

Command-Line Information

Property: SynthesisProjectAdditionalFiles
Type: character vector

Default: '

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

» SynthesisProjectAdditionalFiles
* hdlcoder.WorkflowConfig

19-17

19 HDL Code Generation Pane: EDA Tool Scripts

Lint Script

19-18

Choose HDL lint tool

Enable or disable generation of an HDL lint script, and select the HDL lint tool for which
HDL Coder generates a script.

After you select an HDL lint tool, the Lint initialization, Lint command and Lint
termination fields are enabled.

Settings
Default: None

None

When you select None, the coder does not generate a lint script. The coder clears and
disables the fields in the Lint script pane.

Ascent Lint
Generate a lint script for Real Intent Ascent Lint.
HDL Designer
Generate a lint script for Mentor Graphics HDL Designer.
Leda
Generate a lint script for Synopsys Leda.
SpyGlass
Generate a lint script for Atrenta SpyGlass.
Custom
Generate a custom synthesis script.

Command-Line Information

Property: HDLLintTool

Type: character vector

Value: 'None' | 'AscentLint' | 'Leda’' | 'SpyGlass' | 'Custom'
Default: 'None'

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

Lint Script

See Also

* “Generate an HDL Lint Tool Script” on page 26-71
* HDLLintTool

Lint initialization

Enter an initialization text for your HDL lint script.
Command-Line Information

Property: HDLLintInit

Type: character vector

Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Generate an HDL Lint Tool Script” on page 26-71
* HDLLintInit

Lint command

Enter the command for your HDL lint script.
Command-Line Information

Property: HDLLintCmd

Type: character vector

Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Generate an HDL Lint Tool Script” on page 26-71
* HDLLintCmd

19-19

19 HDL Code Generation Pane: EDA Tool Scripts

Lint termination
Enter a termination character vector for your HDL lint script.

Command-Line Information
Property: HDLLintTerm
Type: character vector
Default: none

To set this property, use hdlset param or makehdl. To view the property value, use
hdlget param.

See Also

* “Generate an HDL Lint Tool Script” on page 26-71
* HDLLintTerm

19-20

Modeling Guidelines

* “Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-2

* “Guidelines for Model Setup and Checking Model Compatibility” on page 20-6
» “Basic Guidelines for Blocks Usage” on page 20-10

* “Guidelines for Modeling with Native Floating Point” on page 20-13

20 Modeling Guidelines

Basic Guidelines for Modeling HDL Algorithm in Simulink

20-2

In this section...

“Use HDL-Supported Blocks” on page 20-2
“Partition Model into DUT and Test Bench” on page 20-4

Use these guidelines to develop your HDL algorithm in Simulink.

Use HDL-Supported Blocks

When you create your Simulink model, use blocks from the Simulink Library Browser >
HDL Coder library. Several blocks in this library are pre-configured for HDL code
generation. Blocks in this library are available with Simulink. If you do not have HDL
Coder, you can simulate the blocks in your model, but cannot generate HDL code.

You can find additional blocks in these Simulink block libraries:

DSP System Toolbox HDL Support
Communications Toolbox HDL Support
Vision HDL Toolbox

LTE HDL Toolbox

To display only HDL-supported blocks in the Library Browser, in the MATLAB Command
Window, enter hd11lib.

hdllib

Basic Guidelines for Modeling HDL Algorithm in Simulink

SE HDL Coder: Library Browser — O X
Enter search term V|-‘%‘4L a9 = @
HDL Coder
HDL Coder
Stateflow HDL
D5P System Toolbox HDL Support 2 Eﬂ D WFP
Communications System Toolbox HDL Support
Vision Hl_jl‘ Toolbox Commonly Discontinuities Discrete HOL Floating Point
HOL Verifier Used Blocks Operations
LTE HDL Toolbox
Recently Used
HDL HDL il A& 2=
0Ps RAMSs s T
HDL Operations HOL RAMs HOL Logic and Bit
Subsystems Operations
yaf{u) I : Misc ®@
Lookup Math Model-Wide Model
Tables Operations Utilities Verification
LW \i‘
~
B K& R B
1OECh e 2i5p
Ports & Signal Signal Sinks
Subsystems Aftributes Routing
B e
b
Sources User-Defined

Functions

To restore the library browser to the default view, enter this command:

hdllib('off")

Note The set of supported blocks will change in future releases, so you should rebuild

your supported blocks library each time you install a new version of this product.

20-3

20 Modeling Guidelines

Partition Model into DUT and Test Bench

When you create your Simulink model for HDL code generation, the Subsystem that you
want to generate HDL code for is the Design-Under-Test (DUT). This Subsystem contains
all blocks and elements that can be implemented on your target FPGA or ASIC device. You
can further partition the logic inside the DUT into smaller subsystems based on
functionality, sample rates in your design, and so on. When you generate HDL code, the
DUT becomes the top-level module or entity, and the Subsystems inside the DUT become
submodules or smaller entities.

Blocks outside the DUT Subsystem become part of the test bench. You can use any blocks
inside the test bench, which includes blocks that are not supported for HDL code
generation. Simulate the test bench to:

» Verify the functionality of the DUT in your Simulinkmodel.
» Verify functional equivalence of the generated model with your original model.

For example, if you open the Simulink model template Blank_DUT, this model opens in
the Simulink Editor.

Note: This model is configured with 'hdlsetup’

HDL DUT

Add your design targeted for ASIC/FPGA inside HDL_DUT and then run the following command:
makehdI('"HDL_DUT')

20-4

See Also

In this model, HDL_DUT Subsystem is the DUT and blocks outside this Subsystem form
the test bench. You can develop your HDL algorithm inside the HDL, DUT Subsystem.
This template model is preconfigured for HDL code generation.

See Also

Functions
checkhdl | hd1lib | hdlmodelchecker

Modeling Guidelines
“Guidelines for Model Setup and Checking Model Compatibility” on page 20-6 | “Basic
Guidelines for Blocks Usage” on page 20-10

More About

. “Use Simulink Templates for HDL Code Generation” on page 10-8
. “Create HDL-Compatible Simulink Model”
. “Show Supported Blocks in Library Browser” on page 25-23

20-5

20 Modeling Guidelines

Guidelines for Model Setup and Checking Model
Compatibility

20-6

In this section...

“Use hdlsetup Function” on page 20-6
“Check Subsystem for HDL Compatibility” on page 20-6
“Run Model Checks for HDL Coder” on page 20-8

Use these guidelines to setup your Simulink model for HDL code generation compatibility
and verify that your design is ready to generate code.

Use hdlsetup Function

Before generating code, you must configure the model. You can use the hdlsetup
command instead of configuring the model manually. The hdlsetup command uses the
set param function to set up models for HDL code generation quickly and consistently.

To configure the model for HDL code generation, at the MATLAB command prompt, run
the hd1lsetup function. For example, to set up the current model, enter:

hdlsetup(gcs)

Check Subsystem for HDL Compatibility

The compatibility checker generates a report specified system for compatibility problems,
such as use of unsupported blocks, illegal data type usage, and so on.

From Simulink Editor

From the Simulink Editor, right-click the DUT, and select HDL Code > Check
Subsystem for HDL compatibility.

From Configuration Parameters Dialog Box
To customize model-level settings for your design and check compatibility of your design

from the UI, use the HDL Code Generation pane in the Configuration Parameters dialog
box or the Model Explorer.

Guidelines for Model Setup and Checking Model Compatibility

To open the Configuration Parameters dialog box, in the Simulink Editor, on the
Simulation tab, select Model Configuration Parameters.

&4 Configuration Parameters: sfir_fixed/Configuration (Active) — O >
Solver Set Basic Options

Data Import/Export

Math and Data Types
» Diagnostics Language: VHDL | -

Hardware Implementation

Generate HDL for: |sfir_fixed/symmetric_fir | -

Folder: hdlsrc Browse...
Model Referencing —
Simulation Target Code generation output
» Code Generation

» Coverage Generate HDL code

¥ HDL Code Generation [] Generate validation model
Target

Optimization Restore Model Defaults Run Compatibility Checker
Floating Point

Generate
Global Settings e

Report
Test Gench
EDA Tool Scripts

OK Cancel Help Apply

To check HDL compatibility, in the HDL Code Generation pane:

1 For Generate HDL for, select the DUT Subsystem.
2 (Click Run Compatibility Checker.

From Command Line

At the command line, use the checkhdl function. Select the DUT Subsystem and then
enter this command:

checkhdl(gch)

20-7

20 Modeling Guidelines

20-8

See also “Check Your Model for HDL Compatibility” on page 25-21.

When you run this command, the HDL compatibility checker generates an HDL Code
Generation Check Report. The report is stored in the target hdlsrc folder. If the report
does not display any errors, your model is compatible for HDL code generation.

Starting HDL Check.
HDL Check Complete with 0 errors, warnings and messages.

Run Model Checks for HDL Coder

To see whether your DUT Subsystem is compatible for HDL code generation, run the
checks in the HDL Model Checker or the Simulink Model Advisor checks for HDL Coder.

From Context Menu
Right-click the DUT Subsystem and select HDL Code > Check Model Compatibility.
From Command Line

At the command line, use the hdlmodelchecker function:

hdlmodelchecker(gcb)

When you run this command, the HDL Model Checker appears.

See Also

) HDL Model Checker - untitled/HDL_DUT

Edit

Help

e — T

~ [[HDL Model Checker

v

RKIKIE]

C3) Model configuration checks

) Checks for ports and subsystems

[=] Check for invalid top level subsystem
(=] Check initial conditions of enabled and t
[C Checks for blocks and block settings

) Mative Floating Point checks

D Industry standard checks

=] Check VHDL file extension

(=] Check naming conventions

(=] Check top-level subsystem/port names
(=] Check module/entity names

(=] Check signal and port names

[=] Check package file names

(=] Check generics

=] Check clock, reset, and enable signals
(=] Check architecture name

[=] Check entity and architecture

(=] Check clock settings

HDL Model Checker
Model Advisor
Analysis

HDL Model Checker for pre-codegen checks

Run Selected Checks

|:| Show repart after run

Report

Report: LJreport_1585.htmil Save As...
Date/Time: Mot Applicable

Summary: 0 Pass: 0 o Fail: 0

Tips

To process all enabled items in this folder and generate a new report, click "Run Selected

Checks™.

& Warning: 0 [=] Mot Run: 37

Help

See Also

Functions

checkhdl | hdllib | hdlmodelchecker

Modeling Guidelines

“Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-2

More About

. “Use Simulink Templates for HDL Code Generation” on page 10-8
. “Create HDL-Compatible Simulink Model”
. “Show Supported Blocks in Library Browser” on page 25-23

20-9

20 Modeling Guidelines

Basic Guidelines for Blocks Usage

In this section...

“Simulink Blocks” on page 20-10
“MATLAB Function Blocks” on page 20-10
“Stateflow Blocks” on page 20-11

“Model References” on page 20-11

“BlackBox Subsystems” on page 20-11

When you create a Simulink model for HDL code generation, use Simulink blocks,
MATLAB Function blocks, and Stateflow blocks based on the application. This figure
shows an example of how you can use the various blocks inside your DUT.

Simulink Blocks

Use Simulink blocks to model arithmetic algorithms that perform numerical processing or
contains feedback loops.

MATLAB Function Blocks

Use MATLAB Function blocks to model the control logic, conditional branches such as if-
else statements, and simple state machines. You can also use MATLAB Function blocks to
model an IP that is written using MATLAB code.

20-10

Basic Guidelines for Blocks Usage

Stateflow Blocks

Use these Stateflow blocks to model your algorithm:

» State Transition Table: Use these blocks to model state machines that control the
output using knowledge of the past and the present.

* Chart: Use these blocks to model flow charts using conditional if-else branches and
state machines that control the output using knowledge of the past and the present.

e Truth Table: Use these blocks to model conditional if-else branches.

You can model combinational logic using Stateflow blocks. For more complex operations
and operations that change timing such as pipeline insertion and procesing, use Simulink
blocks. You can then use the Stateflow logic to process the result calculated from the
Simulink blocks

Model References

For significantly large algorithms that have complex computations, you can partition the
design into a hierarchy of smaller designs. Use this partitioning for reuse, modular
development, and accelerated simulation. You can reuse models by including them as
Model blocks inside a top model. The model that reuses this block is called the top model
and the block that is reused or included in the top model is called the referenced model.

Note When you generate HDL code for a Subsystem that is not at the top level of the
model, HDL Coder converts the Subsystem to a model reference.

A referenced model is treated similar to an Atomic Subsystem. In some cases, an
algebraic loop can potentially occur, and can prevent HDL code generation. To generate
code, either remove the algebraic loop in your design, or, in the Configuration Parameters
dialog box, specify the Minimize algebraic loop occurences setting.

BlackBox Subsystems

For subsystems that you do not want to simulate in your design or to include the HDL
code that you authored, use BlackBox subsystems. To create a BlackBox Subsystem, set
the HDL Architecture of a Subsystem or Model reference to BlackBox. You can use this
architecture to incorporate handwritten HDL code into a Simulink model. For more

20-11

20 Modeling Guidelines

20-12

information, see “Verify the Combination of Hand-Written and Generated HDL Code”
(HDL Verifier).

If you generate a Simulink model using the HDL code that you authored, use HDL import.
To learn more, see “Verilog HDL Import: Import Verilog Code and Generate Simulink
Model” on page 10-115.

See Also

Modeling Guidelines
“Basic Guidelines for Modeling HDL Algorithm in Simulink” on page 20-2

More About

“Show Supported Blocks in Library Browser” on page 25-23
“Design Guidelines for the MATLAB Function Block” on page 29-33
“Introduction to Stateflow HDL Code Generation” on page 28-2
“Generate Black Box Interface for Subsystem” on page 27-4
“Generate Black Box Interface for Referenced Model” on page 27-9

Guidelines for Modeling with Native Floating Point

Guidelines for Modeling with Native Floating Point

Native floating-point support in HDL Coder generates code from your floating-point
design. If your design has complex math and trigonometric operations or has data with a
large dynamic range, use native floating-point. The generated HDL code is target-
independent and complies with the IEEE-754 standard of floating-point arithmetic. To
learn more, see “Getting Started with HDL Coder Native Floating-Point Support” on page
10-67.

You can use these modeling guidelines when using the native floating-point support in

HDL Coder.

Use Blocks from HDL Floating Point Operations Library

The HDL Floating Point Operations block library consists of math and trigonometric
functions and certain Simulink blocks that are configured for HDL code generation in
native floating-point mode. For example, Discrete FIR Filter with Architecture set to
Fully Parallel.

See “HDL Operations and HDL Floating Point Operations”.

Use Floating-Point Types Based on Accuracy and Performance

You can generate HDL code for models that contain floating-point and fixed-point data
types in native floating-point mode. Floating point types have higher dynamic range but
can potentially occupy more a